Олимпиада «Физтех» по физике, февраль 2022

Класс 11

Вариант 11-03

Шифр

(заполняется секретарём)

① Массивная плита движется с постоянной скоростью U вертикально вверх. К плите подлетает шарик, имеющий перед ударом скорость $V_1 = 12$ м/с, направленную под углом $\alpha \left(\sin \alpha = \frac{1}{2} \right)$ к вертикали (см. рис.). После неупругого удара о гладкую горизонтальную поверхность плиты шарик отскакивает со скоростью V_2 , составляющей угол $\beta \left(\sin \beta = \frac{1}{3} \right)$ с вертикалью.

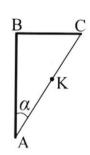
 \bigcirc Найти скорость V_2 .

 ${\mathfrak Q}$ Найти возможные значения скорости плиты U при таком неупругом ударе.

Действие силы тяжести за малое время удара не учитывать. Ответы допустимы через радикалы из целых чисел.

 ${f Q}$ Цилиндрический теплоизолированный горизонтально расположенный сосуд разделен на два отсека теплопроводящим поршнем, который может перемещаться горизонтально без трения. В первом отсеке находится водород, во втором — азот, каждый газ в количестве v=6/7 моль. Начальная температура водорода $T_1=350~{
m K}$, а азота $T_2=550~{
m K}$. Температуры газов начинают медленно выравниваться, а поршень начинает медленно двигаться. Газы считать идеальными с молярной теплоемкостью при постоянном объеме $C_V=5R/2$. $R=8,31~{
m Дж/(моль K)}$.

Найти отношение начальных объемов водорода и азота.

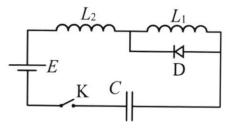

Найти установившуюся температуру в сосуде.

3) Какое количество теплоты передал азот водороду?

3 Две бесконечные плоские прямоугольные пластины AB и BC перпендикулярны друг к другу и образуют двугранный угол с ребром В. На рисунке показано сечение угла плоскостью, перпендикулярной ребру В.

Пластина ВС заряжена с постоянной поверхностной плотностью заряда. Угол $\alpha = \pi/4$. Во сколько раз увеличится напряженность электрического поля в точке К на середине отрезка АС, если пластину АВ тоже зарядить с такой же поверхностной плотностью заряда?

Пластины BC и AB заряжены положительно с поверхностной плотностью заряда $\sigma_1 = 3\sigma, \sigma_2 = \sigma$, соответственно. Угол $\alpha = \pi/5$. Найти напряженность электрического поля в точке K на середине отрезка AC.

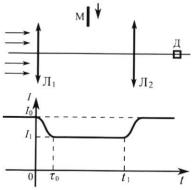


4. Электрическая цепь собрана из идеальных элементов: источника с ЭДС E, катушек с индуктивностями $L_1 = 4L$, $L_2 = 3L$, конденсатора емкостью C, диода D (см. рис.). Ключ K разомкнут, конденсатор не заряжен, тока в цепи нет. После замыкания ключа возникают колебания тока в L_1 .

(1) Найти период T этих колебаний.

 \mathbb{C} Найти максимальный ток I_{MI} , текущий через катушку L_1 .

 \mathfrak{F} Найти максимальный ток I_{M2} , текущий через катушку L_2 .



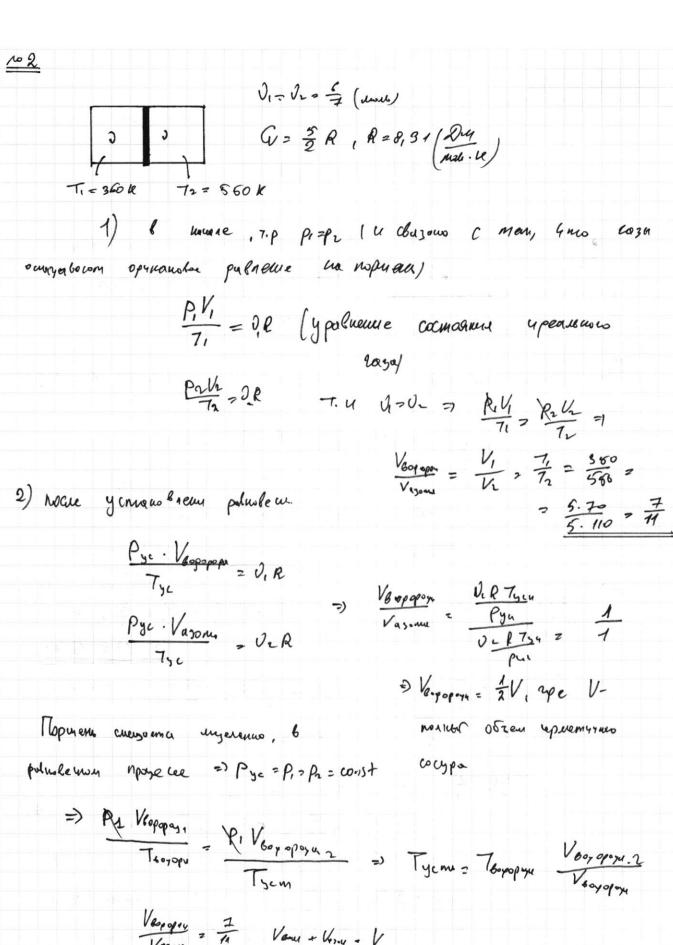
(5.)Оптическая система состоит из двух соосных тонких линз Π_1 и Π_2 (см. рис.) с фокусными расстояниями $3F_0$ и F_0 , соответственно. Расстояние между линзами $2F_0$. Диаметры линз одинаковы и равны D, причем D значительно меньше F_0 . На лицзу Π_1 падает парадлеги по оси систему в причем D за лицзу Π_2 падает парадлеги по оси систему в причем D за лицзу D по оси систему в постоя D составления D с

меньше F_0 . На линзу Π_1 падает параллельно оси системы пучок света с одинаковой интенсивностью в сечении пучка. Прошедший через обе линзы свет фокусируется на фотодетекторе Π_2 , на выходе которого сила тока пропорциональна мощности падающего на него света. Круглая непрозрачная мишень Π_2 , плоскость которой перпендикулярна оси системы, движется с постоянной скоростью перпендикулярно оси системы так, что центр мишени пересекает ось на расстоянии Π_2 от Π_3 . На рисунке показана зависимость тока Π_3 фотодетектора от времени Π_4 (секундомер включен в момент начала уменьшения тока). Π_4 = Π_4 от Π_4 от Π_4 секундомер включен в момент начала уменьшения тока). Π_4 от Π_4 секундомер включен в момент начала уменьшения тока).

П Найти расстояние между линзой Π_2 и фотодетектором. Определить скорость V движения мишени. Определить t_1 .

Известными считать величины F_0 , D, τ_0 .

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ


ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

1 V 1 1 Macculous nouma ghousance & b neowanu xy, book ou oy unberguo con magru c M coelymon are anguar c U: - reper yryon & C.O many cape representations anopour coupy non 8+4 = 6 CO Hum = 1 V2y = Vy + 2U $\sqrt{2} = \sqrt{2} = \sqrt{2} = \sqrt{2} = \frac{2}{2} \sqrt{2} = \frac{2}{2$ 15.19 = 18 (4/6) U= 12 - 12014 Sin B = 1/2 => cosp = ± 200 = 9 cosp - 6 cosx toge 4 bepame augoing 11: 41 = 9. 9/2 - 6 5/3 = 6 5/2 - 3 5/3 (bepruur (bype) 42 = - 9 WT + 6 53 = -6 52 + 3 53 (pbum 6ms) 43 = - 9 2/2 - 6 /3 = - 6 /2 - 3/3 (pbyum 6my) U4 = 6 V2 + 3 V3 1 y by mena lepminous 8 bgp2) @ - comprehens physica wanys us separate our og

Carlen: 92 = 18 (414) U1 = 652 - 353

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТЪ»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

=> Tyun = Tampu.
$$\frac{\frac{1}{2}V}{\frac{1}{10}V} = T_{60,u} = \frac{4}{7} = 350. \frac{4}{7} = 460(U)$$

3) replue navano rupmo qualquei:

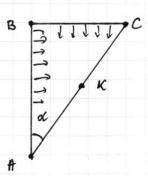
8 Q = pdV+du

Asom - communical c $\frac{11}{18}V$ po $\frac{8}{18}V$, ochabon C $\frac{560H}{90}$ po $\frac{66(4)}{18}V$, we applied C $\frac{7}{18}V$ po $\frac{9}{18}V$, we applied C $\frac{360(4)}{90}$ po $\frac{460(4)}{90}$.

панасти пер спозни в вордану:

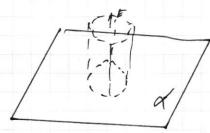
T.R p=const=> npoyecc - modaprieur => C=G+R=G=(=+1)R>

= 7 R

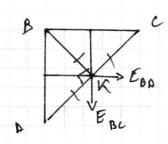

=> Que = C D = = = R. 6 . (560-16) = 2 8 R. 100 = 300 R?

= 900. 8,31 = 2493 (Dec)

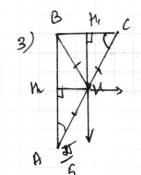
On bemu: Veryopa = 7/11


T= 450(K)

Queperin = 2493 (Du)



1) Benowher T. Payera


pre

$$E = \frac{S\pi R^2}{2\pi R^2 E_0} = \frac{S}{2E_0}$$
4 huspalnems I moreway

$$E_{BC} = \frac{\delta}{2\xi_0}$$

as commy years s:

o Bh C- palmsespenns

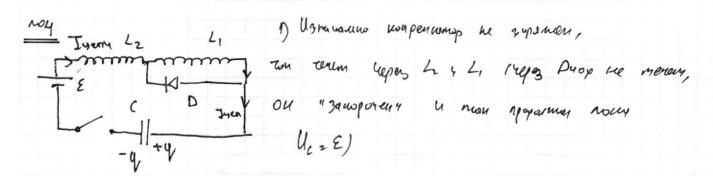
lescong KM. IKH

17.4 LB+ LH1+ LH2+ L K) - 3600 => LU-3100-1800-8002

$$\begin{cases} E_{B} (= \frac{35}{2\xi_{0}}) = \frac{35}{2\xi_{0}} \end{cases} = \frac{2}{2\xi_{0}} = \frac{95}{2\xi_{0}} + \frac{5}{4\xi_{0}} = \frac{105}{4\xi_{0}} = \frac{105}{4\xi_{0}$$

$$E_{\text{Nu}}$$
, $\frac{\sqrt{10}}{2}\frac{\delta}{\epsilon_0} = \sqrt{\frac{5}{a}}\frac{\delta}{\epsilon_0}$

Omberns: 1)
$$\frac{E_{0C}}{E_{n}} = \sqrt{2}$$
2) $E_{n} = \sqrt{\frac{5}{2}} \frac{\delta}{\epsilon_{0}} = \sqrt{\frac{5}{2}} \frac{\delta}{\epsilon_{0}}$



МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ НЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

B yeny (2-or norteno Reprogra:)

$$\mathcal{E} = \begin{pmatrix} l_2 + L_1 \end{pmatrix} \frac{dI}{dt} + \frac{q}{C} \qquad \frac{dI}{dt} = \frac{d^2l}{dt^2} \Rightarrow$$

guapapergranuos ypolneme

ropulpruseally nonegenes co

yenypay palustecus.

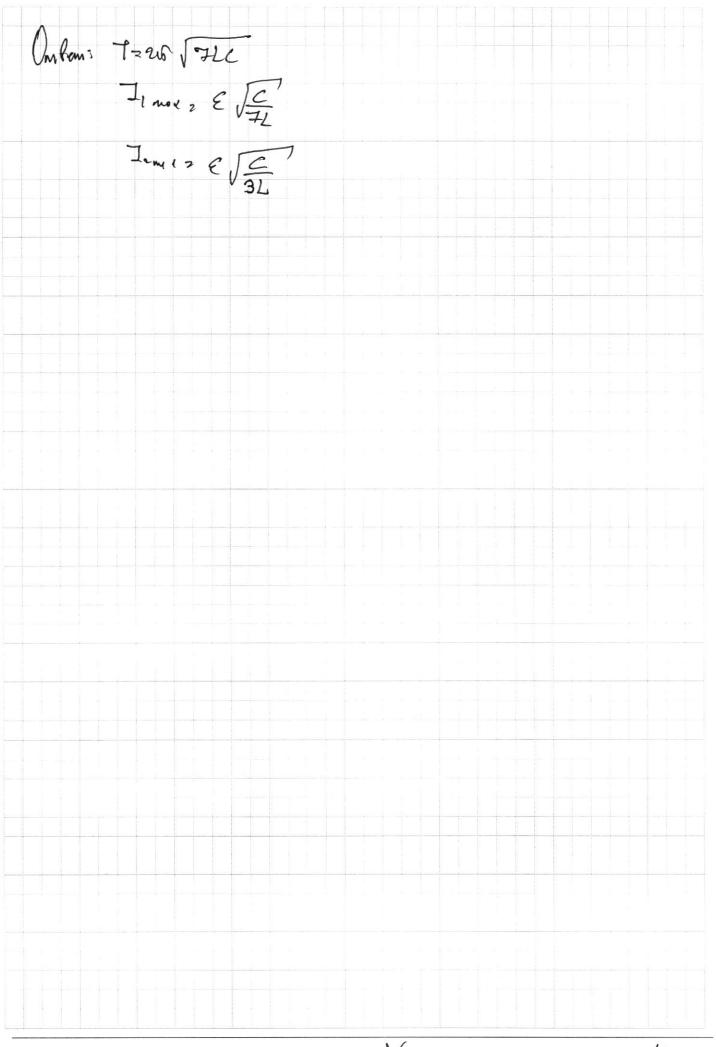
$$B = \frac{\varepsilon}{72} + C = \varepsilon$$

1 movem movem
$$g(t) = g(0) = 0 - A = -B$$

=> $g(t) = g(0) = 0 - A = -B$

I = de = 9(4) = - Ausinat mon, menyung & yeny itt: EC le sinet = y EC [] E = 2 E \ Z =) I - woon , 1pg J - wou =) DIMA, = IMAZE E VETI Dellebra: \$ 1+ = 0, 7.4 cos w+=0, to, rou mopsimam muo (!) => may Sygen, upopam nous glf +0 gltl=0 a sinuteo -) welor awaym par -> muloting represe annely now by nep401 cos wt2-1=) 9 H1 = 28C= Ucz98 l amon livery a represent was though mountinger spens (non however new 6 ypomy Bonows wou nompleany popon menure me mome #9)

Страница № <u>6</u> (Нумеровать только чистовики)

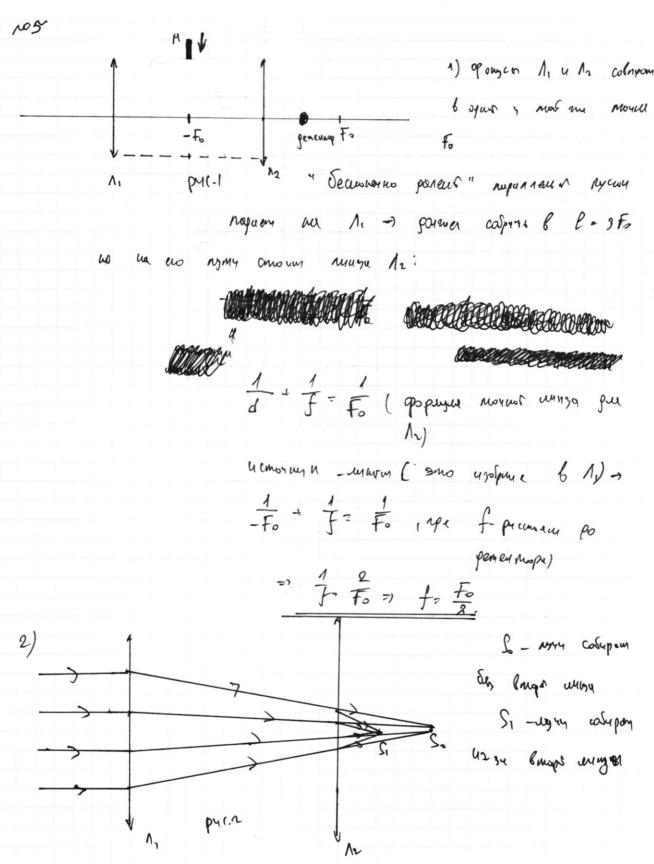


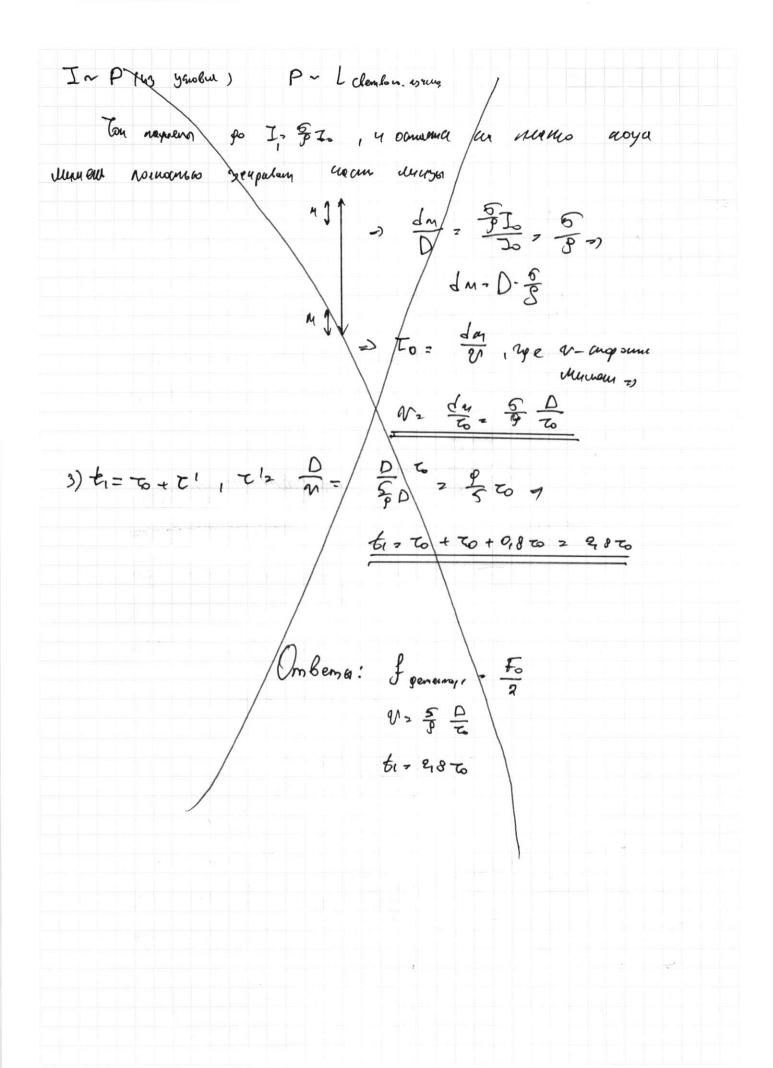
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

1	1	П	И	0	D.	p

(заполняется секретарём)

				b apomubous		•	1
Li	- zousp	0484 he	=)	+ 42 dI2			
			C = 2 6	7 2 2 2			
			Worday	apolaus &	1 pomy	Source	cayos,
							1 1
1	Marino	Lopez	L2=)				
			E = 2	1. 12			
			C	+ 62 des			
				0			
			Ø	1			
			7	1 - L2 + 8 =.	ξ -		
					62		
			9 10	1=29	1110-	^	
					8/18/3	0+6 000	e t
					_		
					CL2 ? E	=) D = E	Cly
					Za		,
							0
					9(0) = 4	EC > EC +	(0 =)
-							
					=> Q(f) 2	E(11+00)	راحیا کا
					We ?		
					~ ′	Cla	
					7.	(d 1-(t).	
				7	JMK 2	(d \$CF)	ur =
					2 -	EC sin	et u
				=>	12 m =	. E. C . S	1 -
					- FWV		
						2 8 5 4	
						VI	7 2

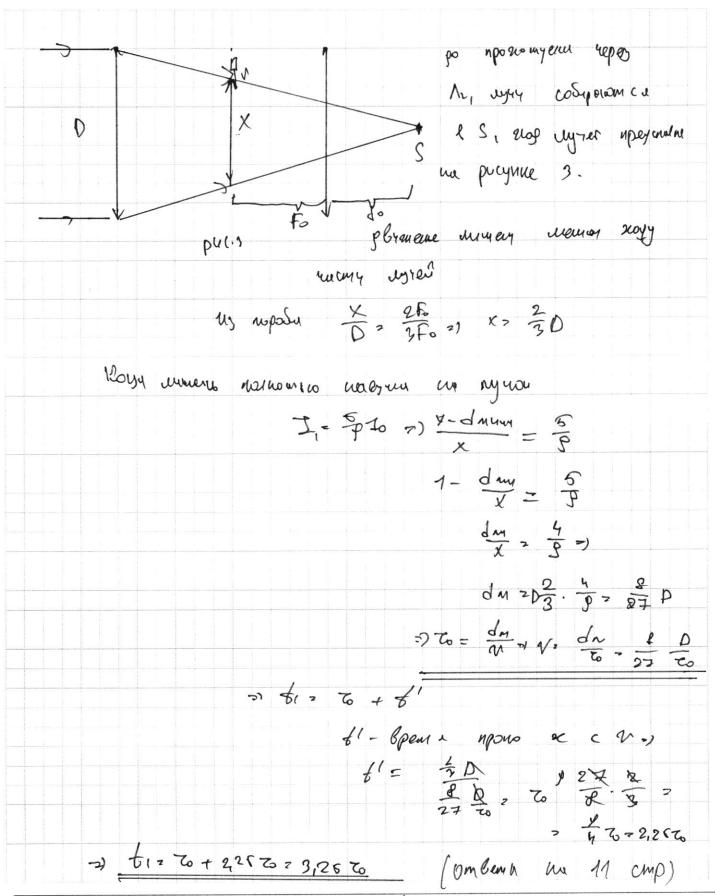




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

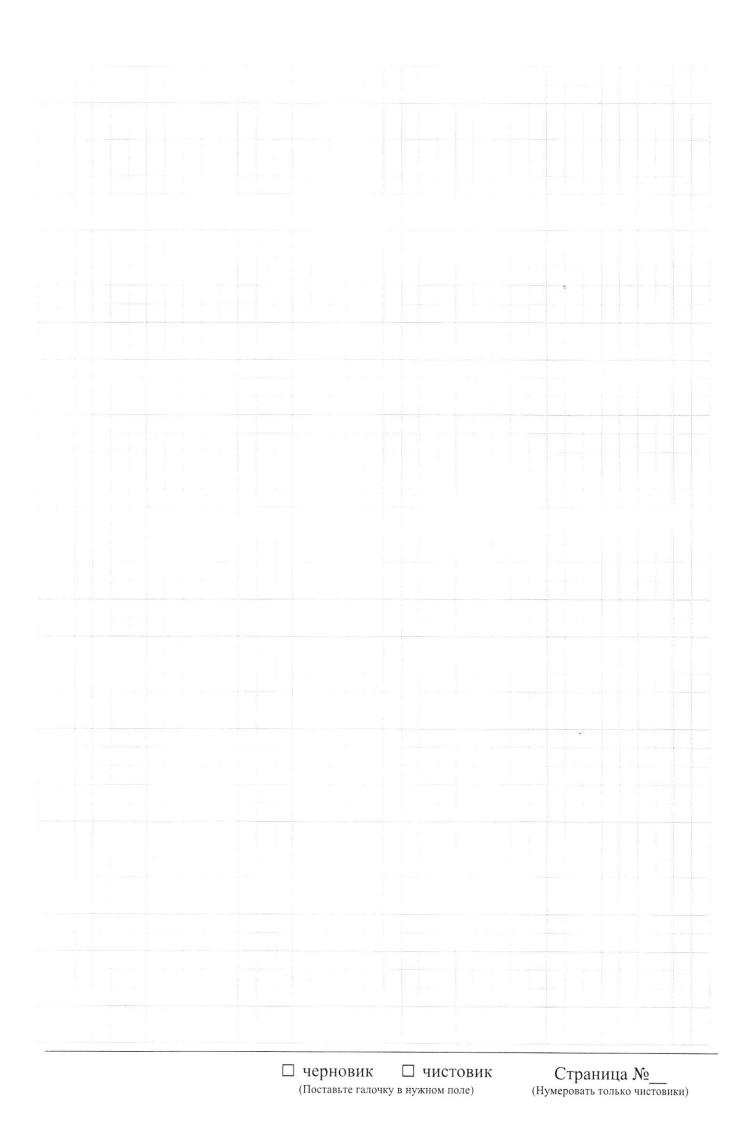
(заполняется секретарём)



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

(заполняется секретарём)

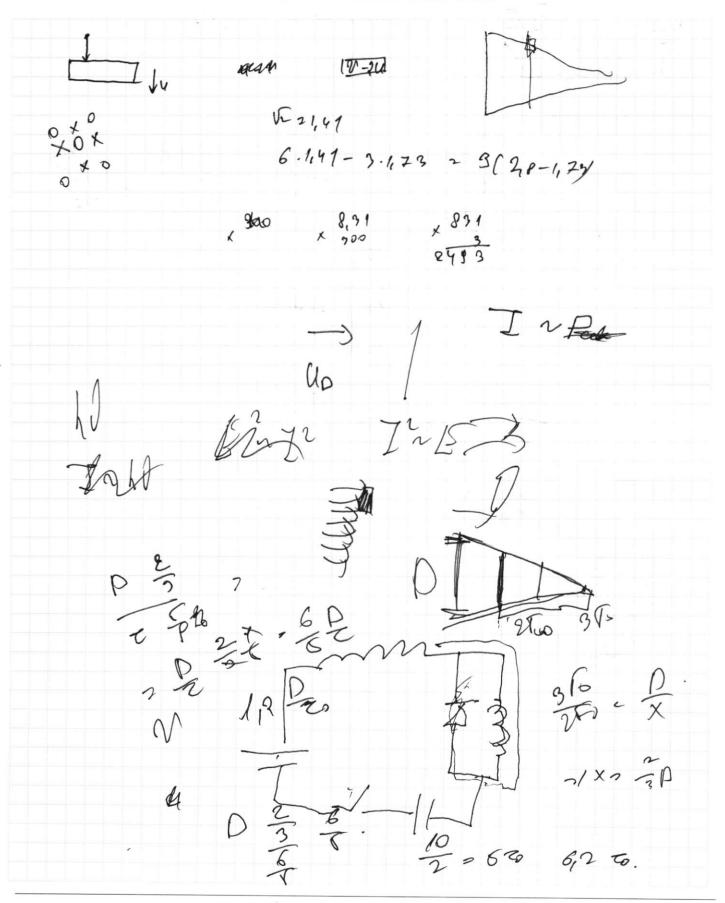




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТЬ». ШИФР

(заполняется секретарём)

Sinw to 1 41 Ca who