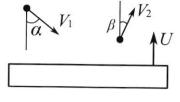
Олимпиада «Физтех» по физике, февраль 2022

Класс 11


Вариант 11-04

Шифр

(заполняется секретарём)

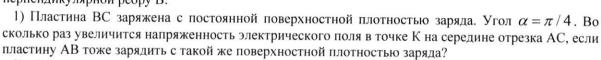
1. Массивная плита движется с постоянной скоростью U вертикально вверх. К плите подлетает шарик, имеющий перед ударом скорость $V_1 = 18$ м/с, направленную под

углом $\alpha \left(\sin \alpha = \frac{2}{3} \right)$ к вертикали (см. рис.). После неупругого удара о гладкую горизонтальную поверхность плиты шарик отскакивает со скоростью V_2 , составляющей угол $\beta \left(\sin \beta = \frac{3}{5} \right)$ с вертикалью.

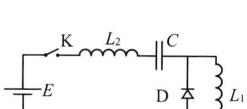
1) Найти скорость V_2 .

2) Найти возможные значения скорости плиты U при таком неупругом ударе.

Действие силы тяжести за малое время удара не учитывать. Ответы допустимы через радикалы из целых чисел.


2. Цилиндрический теплоизолированный горизонтально расположенный сосуд разделен на два отсека теплопроводящим поршнем, который может перемещаться горизонтально без трения. В первом отсеке находится аргон, во втором – криптон, каждый газ в количестве $\nu = 3/5$ моль. Начальная температура аргона $T_1 = 320$ K, а криптона $T_2 = 400$ K. Температуры газов начинают медленно выравниваться, а поршень начинает медленно двигаться. Оба газа одноатомные, газы считать идеальными. R = 8,31 Дж/(моль K).

1) Найти отношение начальных объемов аргона и криптона.

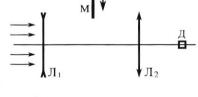

2) Найти установившуюся температуру в сосуде.

3) Какое количество теплоты передал криптон аргону?

3. Две бесконечные плоские прямоугольные пластины AB и BC перпендикулярны друг к другу и образуют двугранный угол с ребром B. На рисунке показано сечение угла плоскостью, перпендикулярной ребру B.

2) Пластину АВ тоже зарядить с такой же поверхностной плотностью заряда? 2) Пластины ВС и АВ заряжены положительно с поверхностной плотностью заряда $\sigma_1 = \sigma, \sigma_2 = 2\sigma/7$, соответственно. Угол $\alpha = \pi/9$. Найти напряженность электрического поля в точке К на середине отрезка АС.

4. Электрическая цепь собрана из идеальных элементов: источника с ЭДС E, катушек с индуктивностями $L_1 = 5L$, $L_2 = 4L$, конденсатора емкостью C, диода D (см. рис.). Ключ K разомкнут, конденсатор не заряжен, тока в цепи нет. После замыкания ключа возникают колебания тока в L_2 .


1) Найти период Т этих колебаний.

2) Найти максимальный ток I_{01} , текущий через катушку L_1 .

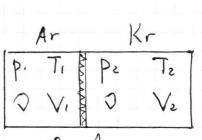
3) Найти максимальный ток I_{02} , текущий через катушку L_2 .

5. Оптическая система состоит из двух соосных тонких линз Π_1 и Π_2 (см. рис.) с фокусными расстояниями -2 F_0 и F_0 , соответственно. Расстояние между линзами 2 F_0 . Диаметры линз одинаковы и равны D, причем D значительно

меньше F_0 . На линзу Π_1 падает параллельно оси системы пучок света с одинаковой интенсивностью в сечении пучка. Прошедший через обе линзы свет фокусируется на фотодетекторе Π , на выходе которого сила тока пропорциональна мощности падающего на него света. Круглая непрозрачная мишень Π , плоскость которой перпендикулярна оси системы, движется с постоянной скоростью перпендикулярно оси системы так, что центр мишени пересекает ось на расстоянии Π 0 от Π 1. На рисунке показана зависимость тока Π 1 фотодетектора от времени Π 1 (секундомер включен в момент начала уменьшения тока). Π 1 = Π 1 / 16

1) Найти расстояние между линзой Π_2 и фотодетектором.

2) Определить скорость V движения мишени. 3) Определить t_1 . Известными считать величины F_0 , D, τ_0 .



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

1) Начальный момент вреши. m.к. поршень находит се в

вновесии, mo p.S=p.S (S-nnousage omne) => p.=p.=p

$$T_1=320 \text{ K}$$
 $T_2=400 \text{ K}$
 $Q=\frac{3}{5}$ work

 $Q=\frac{3}{5}$ work

 $Q=\frac{3}{5}$ work

 $Q=\frac{3}{5}$ work

 $Q=\frac{3}{5}$ work

 $Q=\frac{3}{5}$

2) Yp-e Knanceipona-Mengeneeba gne Ar pV1=7RT,

Dra Kr. PV2 = ORTZ

$$\frac{V_i}{V_e} = \frac{320 \, \text{K}}{400 \, \text{K}} = \frac{32}{40} = 0.8$$

1) 1/2

2) Tycman.

3) Q Kr - Ar

3) Т.к. сосуд теплоизолирован, то Q, полученное аргонои (Qi) = Q, отданнаму криптоном (-Qi) $Q_i = A_i + \Delta U_i$

$$Q_z = A_z + o U_z$$

$$Q_1 = -Q_z$$

3 4) Teurepamypa razob bapabrubarorco => npoyecc monero duma76 Kbazuem amureckur. B kangour roment Epemenue PAT = PKT DVAr = -DVRP AAr = - AKP A = - A2 Q1+Q2=0 A. + DUI + Az + DUz = 0 DUI = - DUZ 3 OR (T-T1) = 3 OR (T2-T) - установившения тенпература T-TI=Tz-T T= Title T = 320K + 400 K = 360 K PEVAR = ORT PrVrp=DRT Var= Vrp Bycm. cocm bravare apron zamencaem odrem Пусть V. = 4 V Kr $V_2 = 5V$ Over cocyga = 9V, morga broneyo 3 cenumarot object 4,5 V

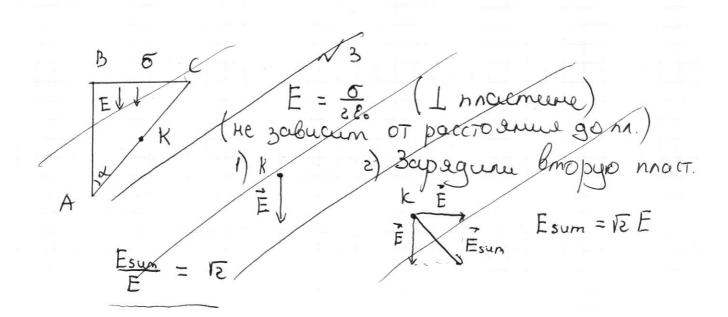
МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

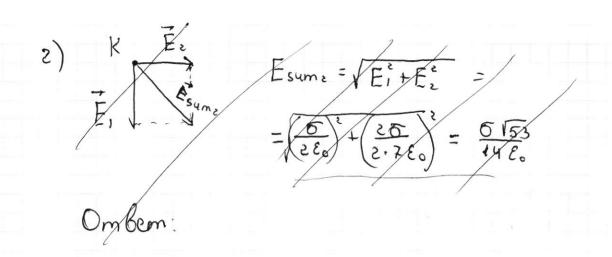
ШИФР

(заполняется секретарём)

$$\frac{P_{R} \ \Psi V}{P_{R} \ \Psi, 5 V} = \frac{QRT}{VRT} \qquad P_{R} = P_{R} \qquad \text{Theoretic usodaysnow}$$

$$Q = \Delta U + A = \frac{3}{2} QR (T - T_{1}) + P (4,5 V - 4V)$$


$$QRT_{1} = \Psi V P \qquad PV = \frac{QRT}{\Psi}$$


$$Q = \frac{3}{2} QR (T - T_{1}) + \frac{1}{8} QRT_{1} = QR (\frac{3}{2}T - \frac{3}{2}T_{1} + \frac{1}{8}T_{1}) = \frac{1}{2}$$

$$= QR (\frac{3}{2}T - \frac{11}{8}T_{1}) = QR (\frac{T_{2}}{2} - \frac{3}{8}T_{1})$$

$$Q = \frac{3 \cdot 8 \cdot 31}{5} (200 - 120) = \frac{80 \cdot 3 \cdot 8 \cdot 31}{5} = 324,09 Q_{R}$$

Omben: 1)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2} = 0, 8$$
 2) $T = \frac{T_1 + T_2}{2} = 360 \text{ K}$
3) $Q = 0R(\frac{T_2}{2} - \frac{3}{8}T_1) = 324,09 \Omega_2$

1) T.K. Arema naccubrai, eè exopocomo pou ygape nemeros nano u eè c/o ≈ nomeo cremato unepopuaro noti. Перейдеш в СО прита Угосъти 23.43

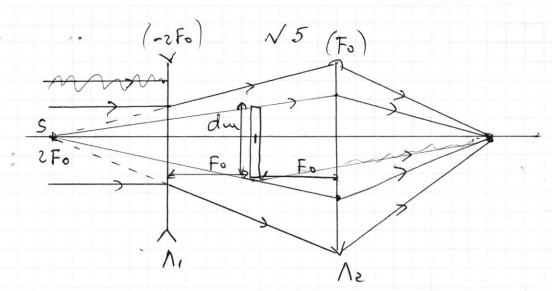
 $\begin{array}{c}
S_1 = 18 \text{ Me/c} \\
S_1 n_2 = \frac{2}{3} \\
S_1 n_3 = \frac{3}{5} \\
COS_2 = \frac{15}{3} \\
COS_3 = \frac{15}{3} \\
COS_3 = \frac{1}{3} \\
COS_3 = \frac{1}{3$

Torga 3 annueue 3 cu. Ha 0 y: $\mathcal{V}_{1} \cdot sin x = \mathcal{V}_{2} \cdot sin y$ $\mathcal{V}_{2} = \frac{\mathcal{V}_{1} \cdot sin x}{sin y} = \frac{10}{9} \mathcal{V}_{1}$ $\mathcal{V}_{2} = \frac{10}{9} \mathcal{V}_{1} = 20 \text{ m/c}$

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)


ПИСЬМЕННАЯ РАБОТА

Ji-cos' x + 2 UV, cosx - Visin'x · ctg's + 2 UV,.

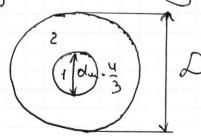
• Sind • ctg 3>0 $V_{1}^{*} \cdot \frac{5}{9} + 24V_{1} \cdot \frac{15}{9} - V_{1}^{*} \cdot \frac{4}{9} \cdot \frac{16}{9} + 24V_{1} \cdot \frac{3}{5} \cdot \frac{4}{3} > 0$ $V_{1} \left(\frac{5}{9} - \frac{4 \cdot 16}{9 \cdot 9} \right) + 24 \left(\frac{15}{3} + \frac{12}{15} \right) > 0$

$$U < \frac{\frac{19}{5} V_1}{615 + 16} = \frac{38}{615 + 16}$$
 w/c

$$0 + 6 \text{em} : 1)^{5} = 5 \cdot \frac{\sin \lambda}{\sin \beta} = 20 \text{ we} / c$$

 $\frac{19}{5} 5 \cdot \frac{5}{16} = \frac{19}{315 + 8} \text{ we} / c$

31) Παραππενουσιώ μηνοκ εθεπα πρεπουνωνες γυ β ραες ευβαρουζεύ πινιζε, γροφοννενώ τηνωύ μα 2Fo za πινιζού. (πινιμοε 4200p.) d:=2Fo+2Fo=4Fo (pacemosnus om S 90 1)


Popueyra markoù neuza:

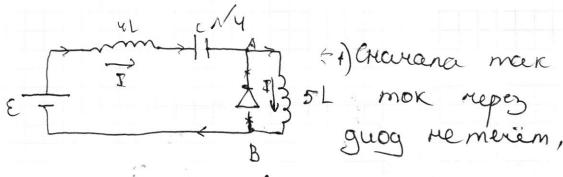
1 = 1 + 1

Fo d, + 5

 $\frac{1}{S} = \frac{1}{F_0} - \frac{1}{4F_0} = \frac{3}{4F_0}$ $S = \frac{4F_0}{3}$

2) Paccourtpune obtacno "merer"
cozgabaeneoù rennembro ma renze 12
(ny une du guerremp renneme)
2/2 rogodine s margen

 $\frac{I_0}{I_1} = \frac{S}{S_2} = \frac{S}{S-S_1}$



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

(заполняется секретарём)

3)
$$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \mathcal{E} = \mathcal{D} - du = \frac{7}{16} \mathcal{D}$$

 $\frac{1}{2} = \frac{7}{16} \mathcal{D} = \frac{7}{16} \mathcal{D} = \frac{16}{9} \tau_0$

Omben: 1)
$$S = \frac{4}{3} F_0$$

2) $V = \frac{90}{16 T_0}$
3) $t_1 = \frac{16}{3} T_0$

m.k. y & > y B (m.k. mox meren bruz no kanyuke 5L.) Danee mok gornuruen wakawice ronoro zharenw omkpoemal guog. Usi=0 (Uguoga) B makou yenu narruj. a

KoneJarue:

$$\frac{1}{1!} = \frac{1}{1!} = \frac{1}{1!}$$

2) Paccueron maxemmentoro τ ora (I_1) par repeg otronnem guoga $U_{L_1}=U_{L_2}=0$.

uchonogen E I, Doll II, Qc=UcC=EC

3C): $A\delta = W_K - W_H + Q$ $\mathcal{E}^c = W_K = \frac{c \mathcal{E}^c}{2} + \frac{4LT_1^2}{2} + \frac{5LT_1^2}{2}$

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

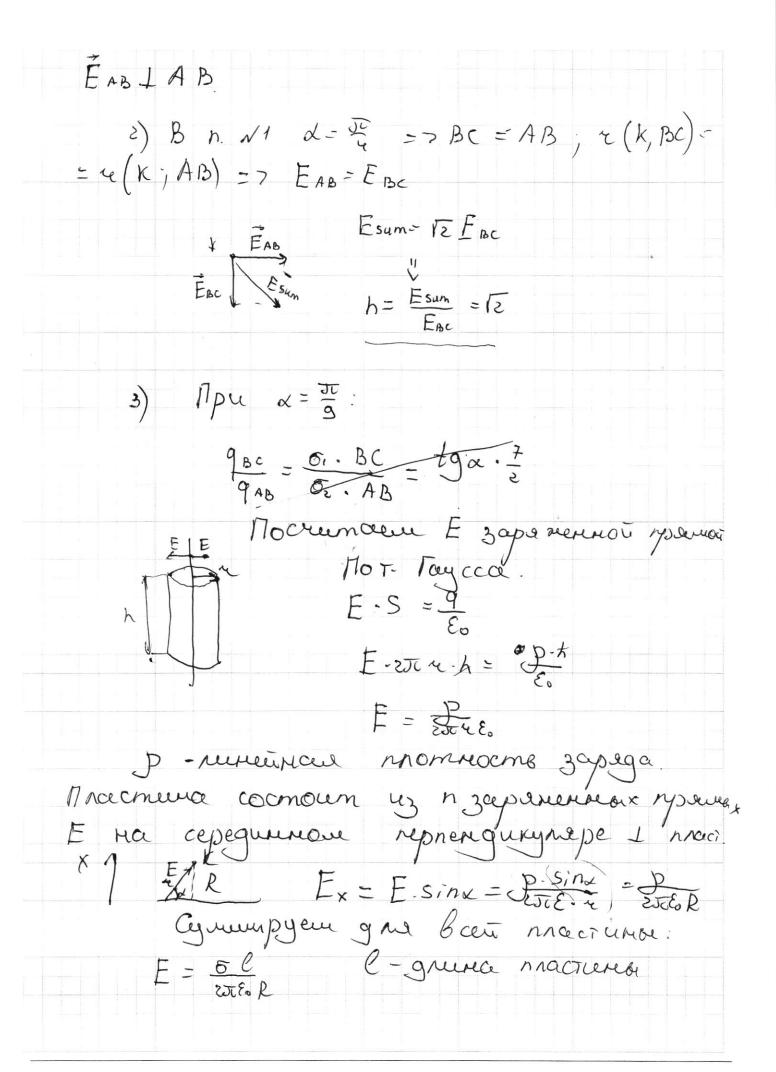
(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

$$c \varepsilon^2 = 9 L T^2$$

$$J_0 = T = \int \frac{c \varepsilon^2}{9L} = \frac{\varepsilon}{3} \int \frac{c}{L}$$

Этот ток Останение по 1 катушке (Инго) начинития колебания на второй.

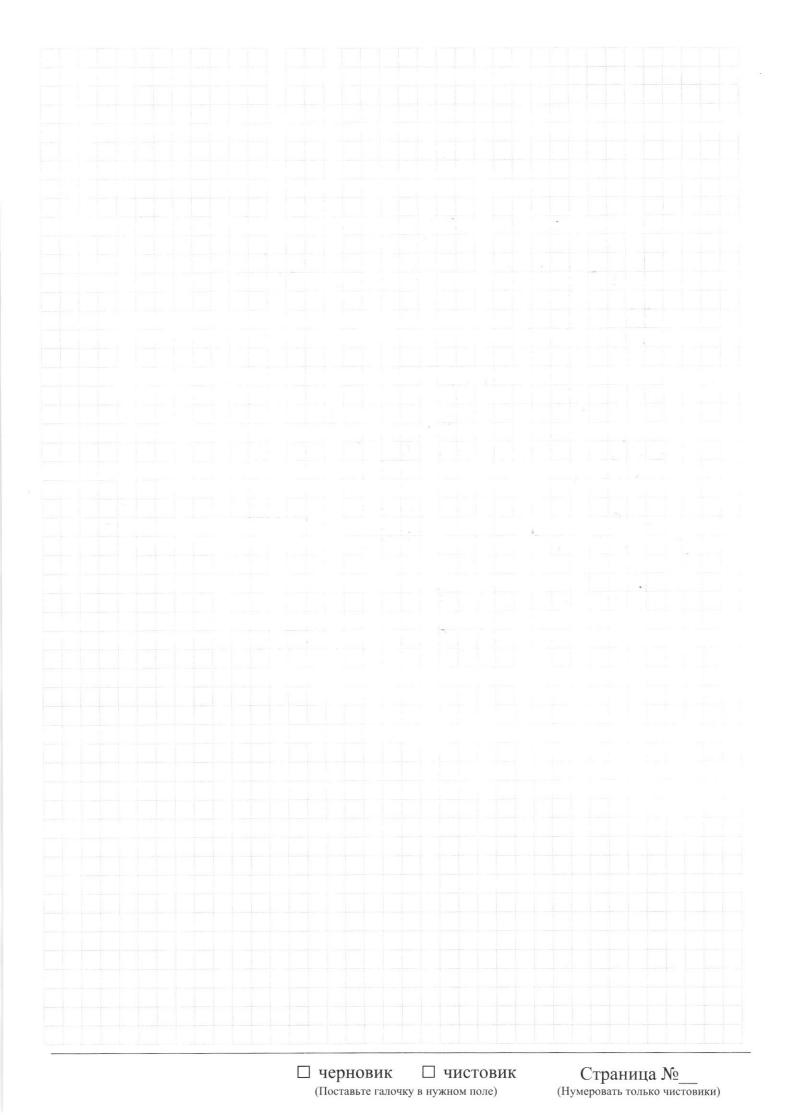

Korga recencementerent rok na L

$$I_{1} = I_{1} = I_{1}$$

$$I_{01}=\overline{I}_{02}=\frac{\varepsilon}{3}\sqrt{\frac{c}{L}} \quad (no 3ca)$$

Omben: 1)
$$T = 25\overline{c}$$
 TLC ; $z) I_{01} = \frac{e}{3} \sqrt{\frac{c}{L}}$
3) $I_{02} = \frac{e}{3} \sqrt{\frac{c}{L}}$

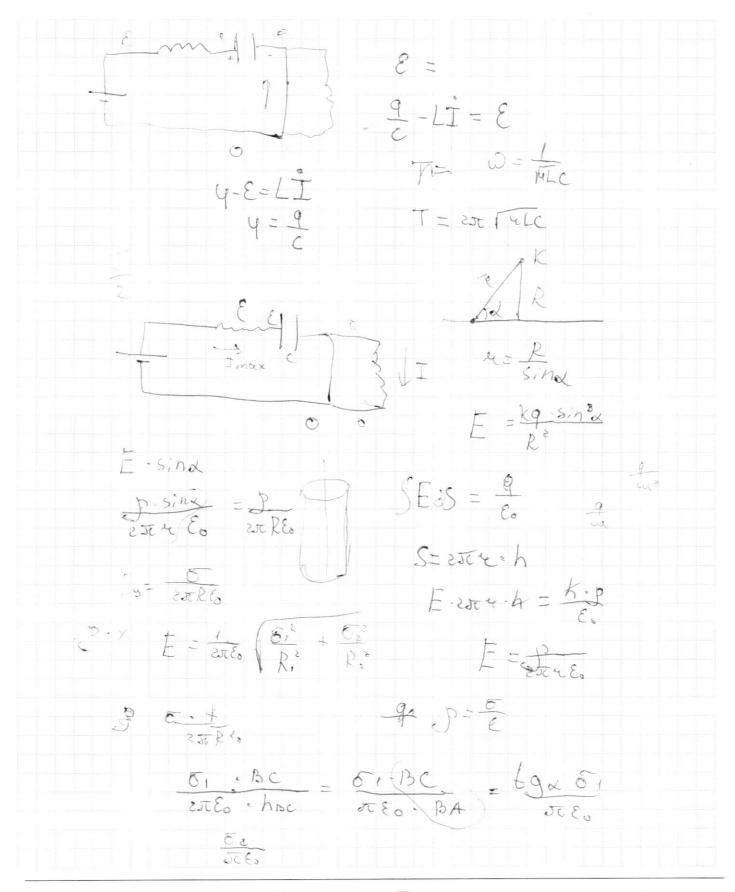
1) Τονκα Κ ρασποποπειια να σερεдине Ac => на серединных перпендикупиров К ВА 4 ВС. Из σοσδραπειιи синистрии горизон состовлиричи Е// пластине 9 ме этой точки убиваются => Ёвс I ВС

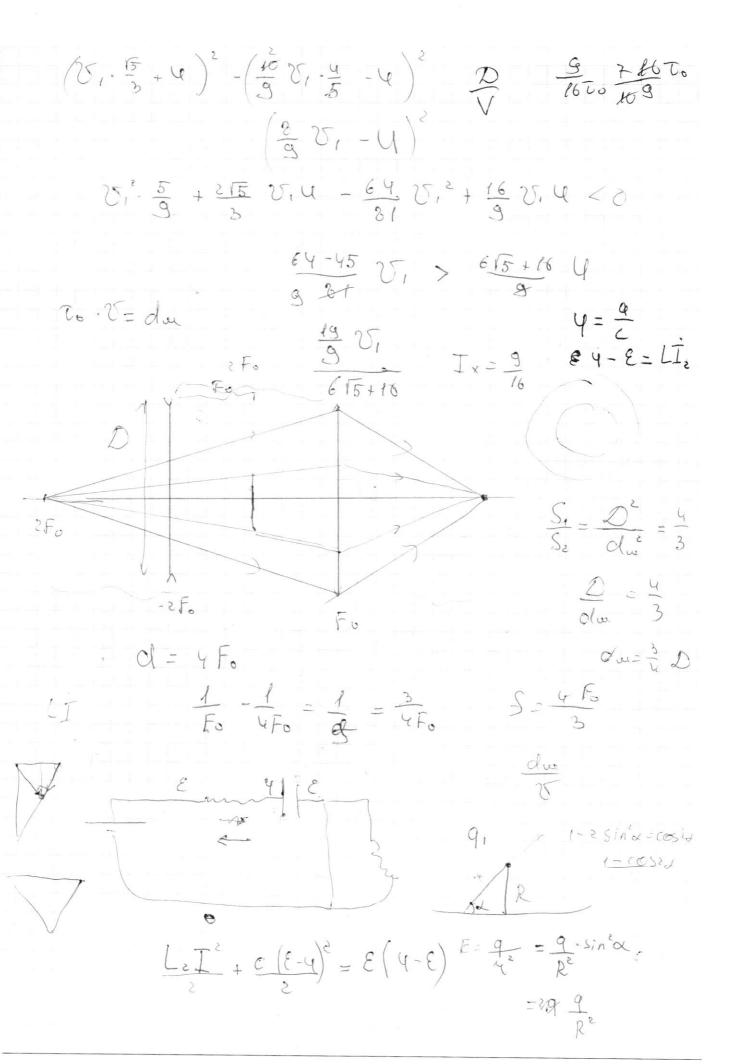


«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

(заполняется секретарём)

Esum =
$$\sqrt{E}$$
, ^2+E , $^2=\frac{1}{\sqrt{16}}$, $\sqrt{\frac{5}{6}}$, $\frac{BC}{2}$, $^2+\frac{AB}{2}$, $\frac{1}{2}$, $\frac{AB}{2}$, $\frac{1}{2}$, $\frac{1$




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

□ черновик □

□ чистовик

Страница №___ (Нумеровать только чистовики)