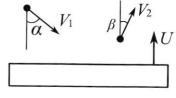
Олимпиада «Физтех» по физике, февраль 2022

Класс 11


Вариант 11-04

Шифр

(заполняется секретарём)

1. Массивная плита движется с постоянной скоростью U вертикально вверх. К плите подлетает шарик, имеющий перед ударом скорость $V_1=18\,$ м/с, направленную под

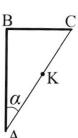
углом
$$\alpha \left(\sin \alpha = \frac{2}{3} \right)$$
 к вертикали (см. рис.). После неупругого удара о гладкую горизонтальную поверхность плиты шарик отскакивает со скоростью V_2 ,

составляющей угол $\beta \left(\sin \beta = \frac{3}{5} \right)$ с вертикалью.

1) Найти скорость V_2 .

2) Найти возможные значения скорости плиты U при таком неупругом ударе.

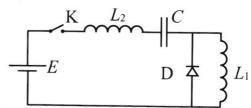
Действие силы тяжести за малое время удара не учитывать. Ответы допустимы через радикалы из целых чисел.


2. Цилиндрический теплоизолированный горизонтально расположенный сосуд разделен на два отсека теплопроводящим поршнем, который может перемещаться горизонтально без трения. В первом отсеке находится аргон, во втором – криптон, каждый газ в количестве $\nu = 3/5$ моль. Начальная температура аргона $T_1 = 320$ K, а криптона $T_2 = 400$ K. Температуры газов начинают медленно выравниваться, а поршень начинает медленно двигаться. Оба газа одноатомные, газы считать идеальными. R = 8,31 Дж/(моль K).

1) Найти отношение начальных объемов аргона и криптона.

2) Найти установившуюся температуру в сосуде.

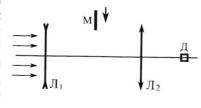
3) Какое количество теплоты передал криптон аргону?


3. Две бесконечные плоские прямоугольные пластины AB и BC перпендикулярны друг к другу и образуют двугранный угол с ребром B. На рисунке показано сечение угла плоскостью, перпендикулярной ребру B.

1) Пластина BC заряжена с постоянной поверхностной плотностью заряда. Угол $\alpha = \pi/4$. Во сколько раз увеличится напряженность электрического поля в точке K на середине отрезка AC, если пластину AB тоже зарядить с такой же поверхностной плотностью заряда?

2) Пластины BC и AB заряжены положительно с поверхностной плотностью заряда $\sigma_1 = \sigma, \sigma_2 = 2\sigma/7$, соответственно. Угол $\alpha = \pi/9$. Найти напряженность электрического поля в точке K на середине отрезка AC.

4. Электрическая цепь собрана из идеальных элементов: источника с ЭДС E, катушек с индуктивностями $L_1 = 5L$, $L_2 = 4L$, конденсатора емкостью C, диода D (см. рис.). Ключ K разомкнут, конденсатор не заряжен, тока в цепи нет. После замыкания ключа возникают колебания тока в L_2 .


1) Найти период T этих колебаний.

2) Найти максимальный ток I_{01} , текущий через катушку L_1 .

3) Найти максимальный ток I_{02} , текущий через катушку L_2 .

5. Оптическая система состоит из двух соосных тонких линз Π_1 и Π_2 (см. рис.) с фокусными расстояниями -2 F_0 и F_0 , соответственно. Расстояние между линзами 2 F_0 . Диаметры линз одинаковы и равны D, причем D значительно меньше F_0 . На линзу Π_1 падрет неродистическая состояния D значительно

меньше F_0 . На линзу Π_1 падает параллельно оси системы пучок света с одинаковой интенсивностью в сечении пучка. Прошедший через обе линзы свет фокусируется на фотодетекторе Π_1 , на выходе которого сила тока пропорциональна мощности падающего на него света. Круглая непрозрачная мишень Π_2 , плоскость которой перпендикулярна оси системы, движется с постоянной скоростью перпендикулярно оси системы так, что центр мишени пересекает ось на расстоянии Π_2 от Π_3 . На рисунке показана зависимость тока Π_3 фотодетектора от времени Π_3 (секундомер включен в момент начала уменьшения тока). Π_4 = Π_3 / Π_3

1) Найти расстояние между линзой Π_2 и фотодетектором.

2) Определить скорость V движения мишени. 3) Определить t_1 .

Известными считать величины F_0 , D, τ_0 .

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

1. Teperagem 6 CO muta. LApuls reten co chopocable $V_1 - \vec{U}$, a otheren co chopocable $V_2 - \vec{U}$. Tochonoling mouta sana magkage, inpockages ummyorded ha copusantanenya och companyorace. T.x \vec{U} he umeet inpockagen ha 3Ty och to chopocab mapuka go nogneta umera upockagen $V_1 \sin x$, a crana umera upockagen $V_2 \sin x$, a crana umera upockagen $V_2 \sin x$, $V_3 \sin x$, a $V_4 \sin x = V_2 \sin x$. $\Rightarrow V_2 = V_1 \frac{\sin x}{\sin x} = 18 \frac{x}{C} \cdot \frac{3}{3} = 18 \frac{x}{C} \cdot \frac{3}{3} = 18 \frac{x}{C} \cdot \frac{10}{9} = 20 \frac{x}{C}$

Теперь постотрим на изменение снорости относительно плиты по вертинальной оси. Оно доложно лежать между $V_{1y}^{\text{отн}}$ - скорости шарина в СО плити в проектии на вертинальную ось - при абсолютно мезируюм ударе и гульрим междуруюм даре и гульруюм. Запишем это: $2V_1^{\text{отн}}$ - при абсолютно упругом. Запишем это: $V_1 \cos x + V_2 \cos x + V_2 \cos x + V_1 \cos x + V_2 \cos x + V_3 \cos x + V_3 \cos x + V_4 \cos x + V_4 \cos x + V_5 \cos x + V_5 \cos x + V_5 \cos x + V_6 \cos$

V, cos x + V2 cos B < 2V, cos x + 24 V2 cos B>, 4 M < V2 cos B 2 4 > V2 cos B - V, cos x

U3 основного Тригонометрического тохдества $\cos \varphi = \sqrt{1 - \sin^2 \varphi} \Rightarrow \cos \varkappa = \sqrt{\frac{5}{3}} = \frac{\sqrt{5}}{3}$; $\cos \beta = \sqrt{\frac{16}{25}} = \frac{4}{5}$ Тогда мм молучаем неравенства $(4 \le 20 \frac{\pi}{5}, \frac{4}{5} = 16 \frac{\pi}{2})$ $(4 \ge 20 \frac{\pi}{5}, \frac{4}{5} = 16 \frac{\pi}{2})$ $(4 \ge 20 \frac{\pi}{5}, \frac{4}{5} = 8 \frac{\pi}{5} - 3\sqrt{5})$ $(5 \ge 8 \frac{\pi}{5} - 3\sqrt{5})$ мс

Orber: 1) $V_2 = 20 \frac{M}{C}$, 2) $8 - 3\sqrt{5}$ Me $\leq U \leq 16 \frac{M}{C}$ 2. Physics Harandhoe gabrehue P_1 , obtains – V_{qP_1} ; V_{pP_1} gra aproha u repuntona cootbetitbenho. Torga no yp-to Mengereeba-Knaünepona $P_1 V_{qP_1} = 0 R T_1$ $P_2 V_{qP_1} = T_1 = \frac{320 R}{400 R} = \frac{32}{5} = \frac{4}{5}$

Заметим, что работа над аргоном равна по модулю и противоположни по знану работе над криптоном. Сосуд теплоизопирован. Тогда мм можем записать 3C9/второе начало термодинамики для системи в целом: $(T_K-понечная температура)$ $3RT_K + 3RT_K + 3RT_K$

 $T_1 + T_2 = 2T_K = T_1 + T_2 = 360 \text{ K}$

Пусть веровых кринтон нередал аргону а тентоты и совершил над нит работу А. Тогда по второрому началу термодинамини:

ОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ НЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

 $\begin{cases} -Q = A + \frac{3}{2} \ln (T_{K} - T_{2}) \\ Q = -A + \frac{3}{2} \ln (T_{K} - T_{1}) \end{cases}$

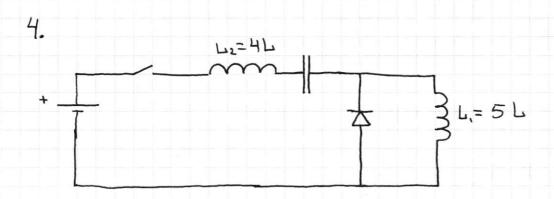
Посчитаем нонечное давление через начальное.

P2 Vapu = DRTK => P2 (Vapu + Vupu) = 2DRTK => PEXE = DR

P2 (Vap, + Vkp,)= DR(T,+T2) => P2=P1. Tyers & Mayoc-TO Moment P=P2 4 Temneparypa Taps 4 Tkp3. Torga по второму началу Термодинамики

3) R (Tap + Tup) = 37 R (Tap, + Tup) =) Tap + Tup = Tap, + Tup, , a no up-to Mengrael ba - Knaunepona P3 (Vapz+Vkpz)=8R(Tap3+Tb)

=) даваение всегда одинаново. Тогда расширения


Karkgoro 2939 430 64 purechoe => Q== \$1 R(TK-T2)=

= \frac{5}{2} \cdot \frac{5}{6} \cdot \text{8,31.40 Dx = 20.3.8,31 Dx = 60.8,31 Dx=

= 6.83,1 Dx = 40886 4 98,6 Dx

4'98,6

OTBET: 1) 4:5,2) 498,6 D7360K, 3) 498,6 Dx

Посмотрим, как выглядит перцод:

- 1) KOHGENCATOP 34PAZAETCA GO E, TOK TEYËT TEPEZ U, U bz, TOK TEYËT NO YACOBOR ESPONHE U GOGUTAET MAKCYMANGNOTO ZHAYEHUA
- 2) KOHGENCATOP 3994KARTCH GO 26 (AMMNUTYGA= 9, honorkenue pa brobecum = E), tok b Katyunkar b, u b, Teyêt no yacoboù etpenke. Tak kak tok b Katyunke b, nagaet, to E_{int} manpabaeno bnus u becco asu yanparkenue yxogus repes 3 gusq.
- 3) Kongencarop pazparkaarca go E, Tok nancunanen u nanpabaen nporub nacoboc capanku, b chazy C nem ugët repez guos, a ne repez Li
- 4) Kongencarop pasparaescen go 0, rok ugêt nporale racobos apeaka, le clasa c nem ugêt reper guog.

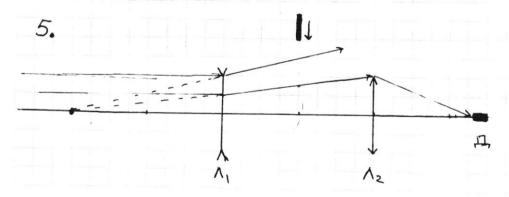
Takum oбразом период будет равен $\frac{1}{2}$ периода в схеме $\frac{1}{2}$ периода в схеме $\frac{1}{2}$ периода в схеме $\frac{1}{2}$ То есть $\frac{1}{2}$ 2 $\frac{1}{2}$ $\frac{1$

= TT (J46C + JBLC) = 5TT VLC

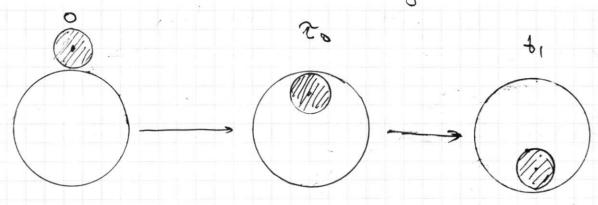
ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА


Максипальный том нас ден из 30Э:

Jes barapeaky. B KoneJahunx c barapeakoù Utogbunga Ma & Chepx, a I(+) neusnemmo. Torga 6 nephow exerce In= & C , a lo bropais = ETC . Torga


$$I_{01} = I_m^1 = \mathcal{E}\sqrt{\frac{C}{9L}} = \frac{1}{3} \mathcal{E}\sqrt{\frac{C}{L}}$$
; $I_{02} = max(I_m^2; I_m^2) = \mathcal{E}\sqrt{\frac{C}{b_2}}$

$$= \xi \sqrt{\frac{c}{4L}} = \frac{1}{2} \xi \sqrt{\frac{c}{L}}$$

OTBET: 1) 5 TT VCL 2) & EVE 3) & EVE

Линза Ла создаст тинтое изображение на расстоянии 2 Fo che ba ot reë. One haxoguires na pace Toxhur 4 Fo of Mz. Torga 1/2 coponycupyes cles na parconennu x, rge x margen us popuyan TOHKOR NUMBER + 450 = 1 => X= \$ 5 Это и есть расстояние от лг до Фогодетентора. Теперь мостотрит, нание луги вообще доходят до фото делекто ра. Это все луги которые монадают на на Λ_2 . На уровне М диаметр этого мугна состава я еа $D_{n-\frac{1}{4}}D$ (из подобия). $I_1 = \frac{7}{16}I_0 \Rightarrow$ М заслоняет $\frac{9}{16}$ мугна \Rightarrow её диаметр $D_M = \frac{3}{4}D_{\Pi} = \frac{9}{16}D$. Она чтобы заслонить свет до I_1 уомъна молюстью въсхать в свето во \equiv иц гок:

To ecto ora gonzena upoexaro Dm. Tak kak
ona genaet 370 3a To, To eè chopoeto $V=\frac{9}{10}=\frac{9}{10}\frac{\Omega}{Go}$ 3a Epenn t_1 Munero upoexague D_n . Torga .

Spena cè nomina gladerenan $t_1=\frac{2}{30}=\frac{D_n-316}{10}$ $C_0=\frac{4}{3}$ To

Other: 1) $\frac{4}{3}$ Fo 2) $\frac{9}{16}$ $\frac{D}{C_0}$ 3) Fra $\frac{4}{3}$ To

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

3. Practuria c nobepxnocomoria unormoco dos sapaga o cosquet none palmoe of Torga le neplom crytale none omno manpalaremo las, a satem no apangung cynep nosusuru k menny gotalunaa taxol see, nanpalaremole nog graom to k noplomy. Torga none ybeau turoco le ve pas.

Bo bropom cayare none ckaaquibaleta is

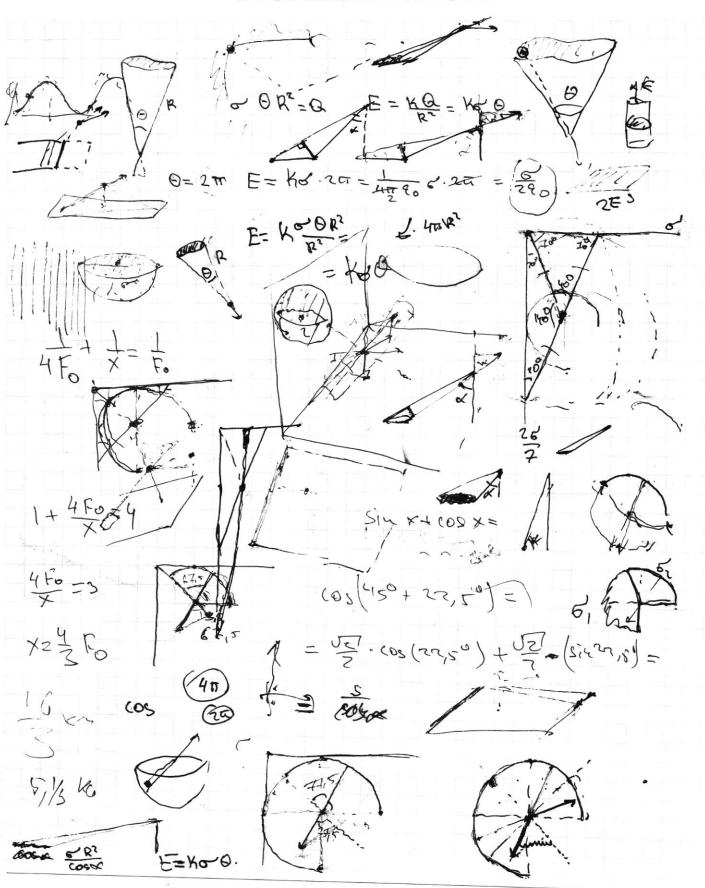
Gloyx reprenduky anghux komnonent, palmux

260 4 25-25- 260. Torga obuse none 300

E=VE1+E2 = 5 14 + 19 = 14 80 153

ροεκομα hona memora memora, ma oct 1 et 200 κσθ, igo Θ-πενείνων για.

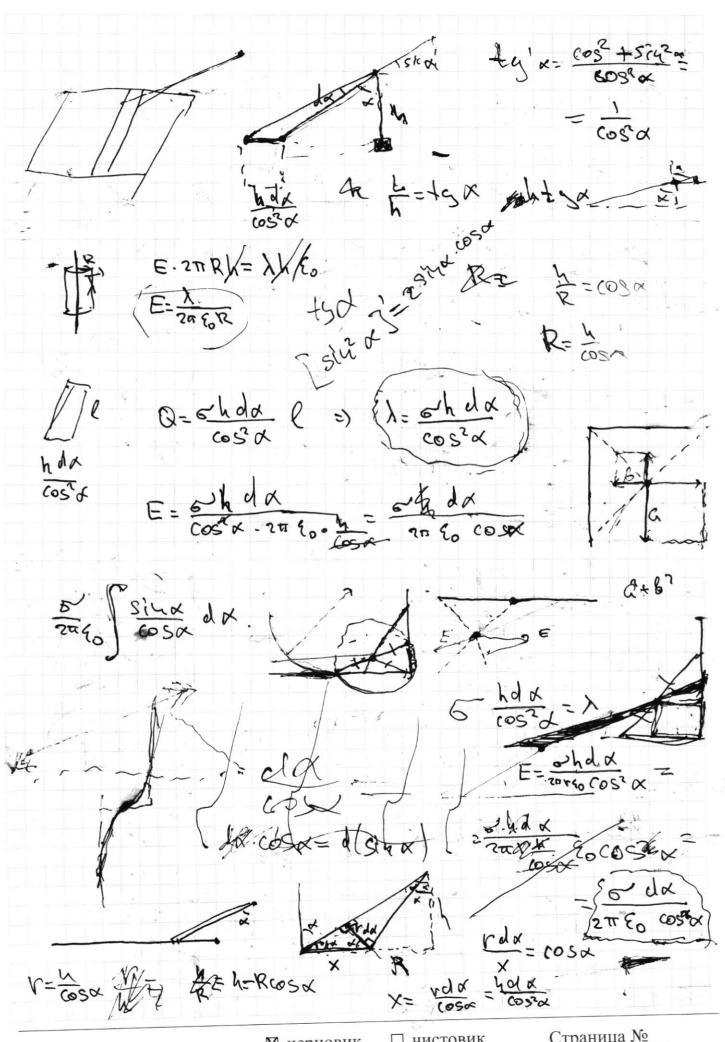
Orber: 1/12, 2) 1/48, 153

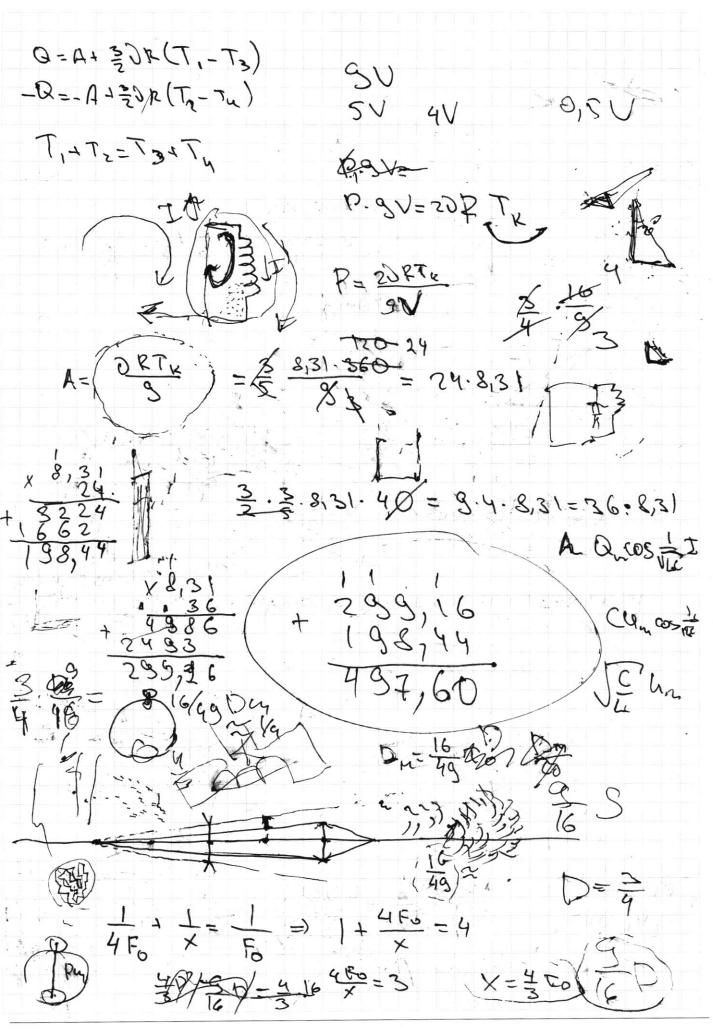

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)


ПИСЬМЕННАЯ РАБОТА


№ черновик

□ чистовик (Поставьте галочку в нужном поле)

Страница № (Нумеровать только чистовики)

 Черновик □ чистовик (Поставьте галочку в нужном поле)
 Страница №___ (Нумеровать только чистовики)

☑ черновик □

□ чистовик

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

U, sind= Uzsin B 2= V, Sina = V, 3/3 = 10 V, =

250912-0512-014 2, coxx+4