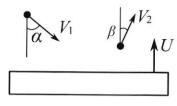
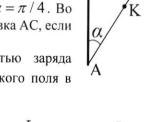
CZOLENGO BUNGMANON COLUMN CULT Add his one

Олимпиада «Физтех» по физике, февраль 2022

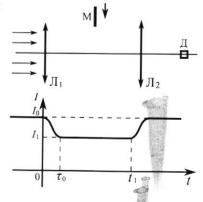

Класс 11

Вариант 11-03


Шифр

(заполняется секретарём)

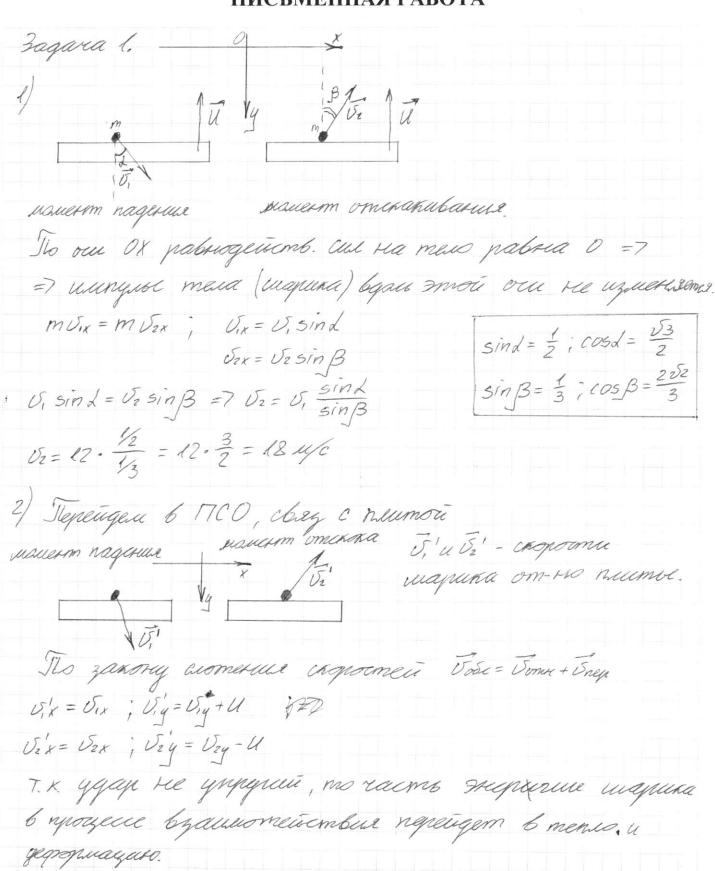
1. Массивная плита движется с постоянной скоростью $\it U$ вертикально вверх. К плите подлетает шарик, имеющий перед ударом скорость $V_1 = 12$ м/с, направленную под к вертикали (см. рис.). После неупругого удара о гладкую горизонтальную поверхность плиты шарик отскакивает со скоростью V_2 , $\sin \beta = \frac{1}{3}$) с вертикалью. составляющей угол β



- 1) Найти скорость V_2 .
- 2) Найти возможные значения скорости плиты U при таком неупругом ударе. Действие силы тяжести за малое время удара не учитывать. Ответы допустимы через радикалы из целых чисел.
- 2. Цилиндрический теплоизолированный горизонтально расположенный сосуд разделен на два отсека теплопроводящим поршнем, который может перемещаться горизонтально без трения. В первом отсеке находится водород, во втором – азот, каждый газ в количестве $\nu = 6/7$ моль. Начальная температура водорода $T_1 = 350$ K, а азота $T_2 = 550$ К. Температуры газов начинают медленно выравниваться, а поршень начинает медленно двигаться. Газы считать идеальными с молярной теплоемкостью при постоянном объеме $C_V = 5R/2$. $R = 8.31 \, \text{Дж/(моль K)}$.
 - 1) Найти отношение начальных объемов водорода и азота.
 - 2) Найти установившуюся температуру в сосуде.
 - 3) Какое количество теплоты передал азот водороду?
- 3. Две бесконечные плоские прямоугольные пластины АВ и ВС перпендикулярны друг к другу и образуют двугранный угол с ребром В. На рисунке показано сечение угла плоскостью, перпендикулярной ребру В.
- 1) Пластина ВС заряжена с постоянной поверхностной плотностью заряда. Угол $\alpha = \pi/4$. Во сколько раз увеличится напряженность электрического поля в точке К на середине отрезка АС, если пластину АВ тоже зарядить с такой же поверхностной плотностью заряда?
- 2) Пластины ВС и АВ заряжены положительно с поверхностной плотностью заряда $\sigma_1 = 3\sigma$, $\sigma_2 = \sigma$, соответственно. Угол $\alpha = \pi/5$. Найти напряженность электрического поля в точке К на середине отрезка АС.

D

- 4. Электрическая цепь собрана из идеальных элементов: источника с ЭДС Е, катушек с индуктивностями $L_1 = 4L$, $L_2 = 3L$, конденсатора емкостью C, диода D (см. рис.). Ключ K разомкнут, конденсатор не заряжен, тока в цепи нет. После замыкания ключа возникают колебания тока в L_1 .
 - 1) Найти период T этих колебаний.
 - 2) Найти максимальный ток I_{M1} , текущий через катушку L_1 .
 - 3) Найти максимальный ток I_{M2} , текущий через катушку L_2 .
- 5. Оптическая система состоит из двух соосных тонких линз Π_1 и Π_2 (см. рис.) с фокусными расстояниями $3F_0$ и F_0 ,
- соответственно. Расстояние между линзами $2F_0$. Диаметры линз одинаковы и равны D, причем D значительно меньше F_0 . На линзу Π_1 падает параллельно оси системы пучок света с одинаковой интенсивностью в сечении пучка. Прошедший через обе линзы свет фокусируется на фотодетекторе Д, на выходе которого сила тока пропорциональна мощности падающего на него света. Круглая непрозрачная мишень М, плоскость которой перпендикулярна оси системы, движется постоянной перпендикулярно оси системы так, что центр мишени пересекает ось на расстоянии F_0 от Π_1 . На рисунке показана зависимость тока I фотодетектора от времени t (секундомер включен в момент начала уменьшения тока). $I_1 = 5I_0/9$.
 - 1) Найти расстояние между линзой Π_2 и фотодетектором.
- 2) Определить скорость V движения мишени. 3) Определить t_1 . Известными считать величины F_0 , D, τ_0 .

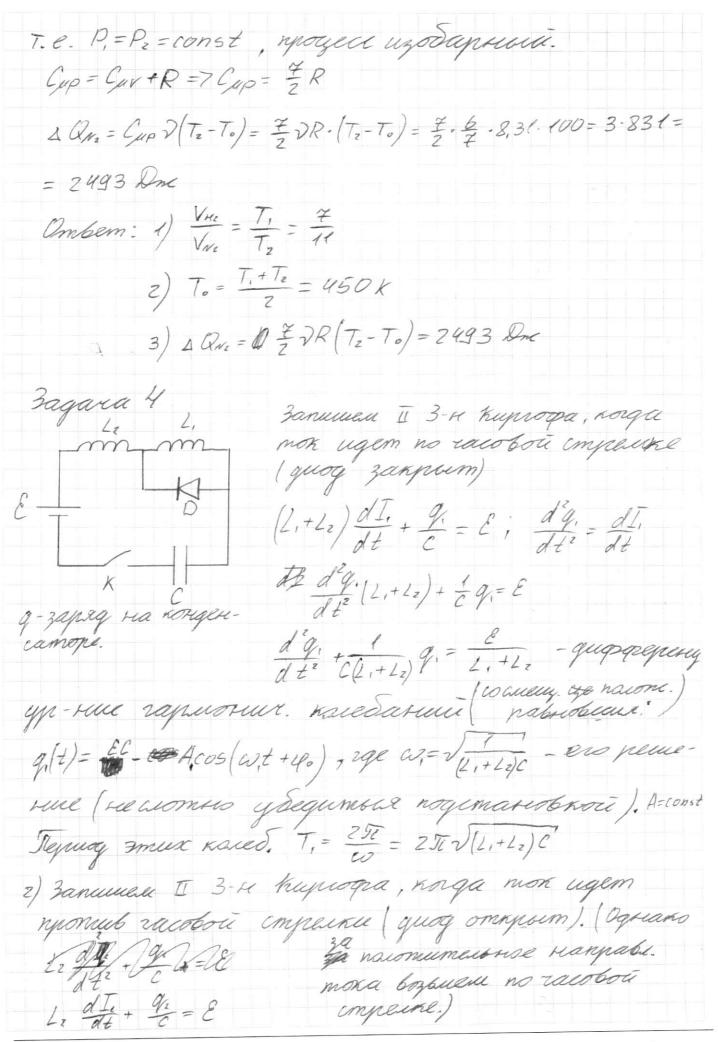


«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

Запишан закон согр. энериш. m v." = mvz" + En, rge En- mepuse nomeps. $E_n = \frac{m}{2} \left(|S_1' - S_2'| \left(|S_1' + S_2'| \right) \right)$; $E_n \neq 0' \Rightarrow$ existing displaying a yapper. => 5,1-5,70 2 Vix + (Viy + 4) 7 2 Vix + (Viy - 4) Vix + Viy + 2 Viy U+ 11 7 Vix + Viy - 2 UViy + 11 24 Vig + Vig) 7 (Vig - Vig) 2 a 7 Vzg - V,g U > Vig - Vig : Vig = Vicosd ; Vig = Vicos B = 3 Vicos B 47 U, (3 cos/3-cosd) $u > 12\left(\frac{3}{2}, \frac{2\sqrt{82}}{3} - \frac{\sqrt{3}}{2}\right) = 6\left(\sqrt{2} - \frac{\sqrt{3}}{2}\right)u/c$ amben: 1) Vi= V. sin B = 18 u/c 2) $u > \frac{5}{2} (\frac{3}{2} \cos \beta - \cos \lambda)$; $u > 6 (\sqrt{52} - \frac{\sqrt{3}}{2}) u/c$ Bagara 2 Т.К. поршень подвитимий, то давиние в первой части bierga pabris gabiereuro lo Emopori

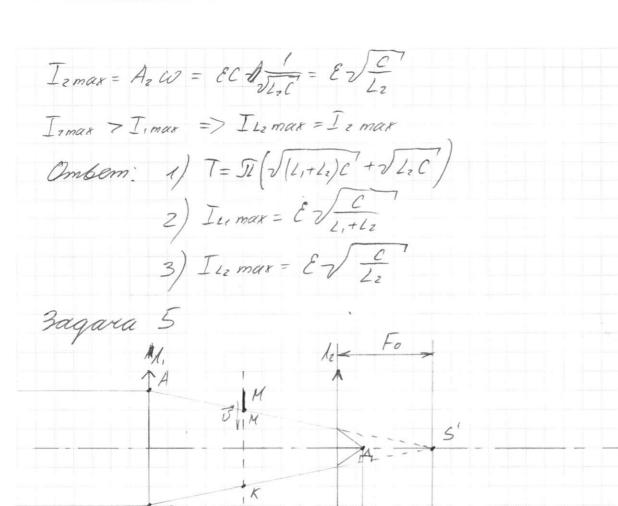


«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

т. к согда теплоизащрованный, то теплота отдан-
ная I чистью сосуди, равна теплоте, которую пац- чила вторых чисть.
чина вторые часть.
$C_{\mu_1}V(T_2-T_0)=C_{\mu_2}V(T_0-T_1)$ $U(dV_1(t)= dV_2(t))$ $C_{\mu_1}(t)=C_{\mu_2}(t) b cerqa T. K. P_1(t)=P_2(t) U(dR(t)=\bullet dR(t),$
rge P(t); Pr(t); V.(t); Vr(t) - p-your gabierous u
odreua om byeneru
odreua om épecerus $T_z - T_o = T_o - T_v = T_o = \frac{T_z + T_v}{2} = 450 \text{ K}$
Запишен ур-ния Менделева- внаперона Уме
обоих частей в нач. манент.
$P, V = \partial RT, V_1 = T_1 + T_2$
$\begin{cases} P, V_1 = \mathcal{I}RT, \\ P, V_2 = \mathcal{I}RT, \end{cases} = \frac{V_1}{V_2} = \frac{T_1}{T_2} = \frac{\mathcal{Z}}{\mathcal{Z}}$
T. K Kal- 60 oxmanterise palus Kal-ly menismo njunimoi
$d\mathcal{R}_{1} = d\mathcal{Q}_{2}$; $d\mathcal{Q}_{1} = d(\mathcal{C}_{\mu}, \partial \mathcal{T}_{1}) = \mathcal{C}_{\mu}, \partial d\mathcal{T}_{1}$
$d\mathcal{Q}_{1} = d\mathcal{Q}_{2} ; d\mathcal{Q}_{1} = d\left(C_{\mu_{1}} \mathcal{T}_{1}\right) = C_{\mu_{1}} \mathcal{T}_{d} \mathcal{T}_{1}$ $d\mathcal{Q}_{2} = d\left(C_{\mu_{2}} \mathcal{T}_{2}\right) = C_{\mu_{2}} \mathcal{T}_{d} \mathcal{T}_{2}$ $u \in \mathcal{G}_{u_{1}} = \mathcal{G}_{de}$
$= \int dT_1 = -dT_2 ; dT_1 = d\left(\frac{P_1 V_1}{DR}\right) = \int_{R} d(P_1 V_1)$
$dT_z = d\left(\frac{P_e V_e}{\overline{\nu}R}\right) = \frac{1}{\overline{\nu}R} d\left(P_e V_e\right)$
$d(P,V_1) = d(P_2V_2)$ $= dP_1 = dP_2 \text{ becaya.}$
$d(P,V_1) = d(P_2V_2)$ $dP,V_1 + P,dV_2 = dP_2V_2 + P_2dV_2); P_1 = P_2 being a, u dV_1 = -dV_2$
$dP, V_1 = -dP_2V_2$; $V_1 \neq -V_2$ T.K. Locyg the mercean values = $DdP_1 = dP_2 = 0$ thereof of various.
=> dP,=dP=0 runsqa=> odrecia.



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

La to
dg: + 1 q = E - quapapereix yn-rue rape. Raced co cuery nown pabrobacce.
$q_{z}(t) = \frac{\mathcal{E}C}{2\pi} - A_{z}\cos(\omega_{z}t + \varphi_{o})$, $z_{qe}(\omega_{z} = \sqrt{\frac{1}{2\pi}C} - ewo neuwercae.$ $T_{z} = 2\pi \sqrt{2\pi C} - nepwoq$ music navedancie.
Β εμεπαίε διγμη προιεωσμιπό εισπιωτί καιεδ. προιμεί , πος κοποριία πρα φθωπ ποκά πο ται. επρείπε
begen cede kan $q_1(t)$, a new glum nema no tace engenie Sepung mux naced patem $T_3 = \frac{T_1}{2} + \frac{T_2}{2}$ (orebugges)
$T_3 = \Im\left(\sqrt{k_1 + k_2}\right)C' + \sqrt{k_2}C'\right)$
Illow represent name unity 2, merem maioro 6 nyayec- casc $q_1(t)$, naccus mpian ero. $q_1(t) = \mathcal{EC} - A$, $\cos(\omega_1 t + \varphi_0)$, $\int q_1(0) = 0$ => $\varphi_0 = 0$
$I_{\bullet}(t) = \frac{dq_{\bullet}}{dt} = A_{\bullet} \alpha_{\bullet} \sin(\alpha_{\bullet} t + \varphi_{\bullet}) I_{\bullet}(0) = 0 A_{\bullet} = \mathcal{EC}$
=> $I_1 max = A_1 \omega_1 = \mathcal{E}C \sqrt{(I_1 + I_2)C} = \mathcal{E}\sqrt{I_1 + I_2}$ Tmodu racimu $I_1 max$ repez I_2 pacaciompina ripogece $g_2(t)$ a grabicana $I_2 max$ a $I_1 max$
a.(t)= &C-A.cos(wzt+40) roga rarremas rpoyece
$I_{1}(t) = \frac{dq_{1}}{dt} - A_{1} \omega_{1} \cos(\omega_{1}t + Q_{0}) \left(6 \cos(\omega_{1}t + Q_{0})\right) \left(6 \cos(\omega_{1}t + Q_{0$

Т.К. пучок, падающе на В.Л. парал, по его изобр. сорокуще в т. 5' на расстачний фотура МЛ, от МЛ. Ропуское расconserve to 1 = 3 Fo = 7 pacconserve wengy 1, u 5' = 3 Fo

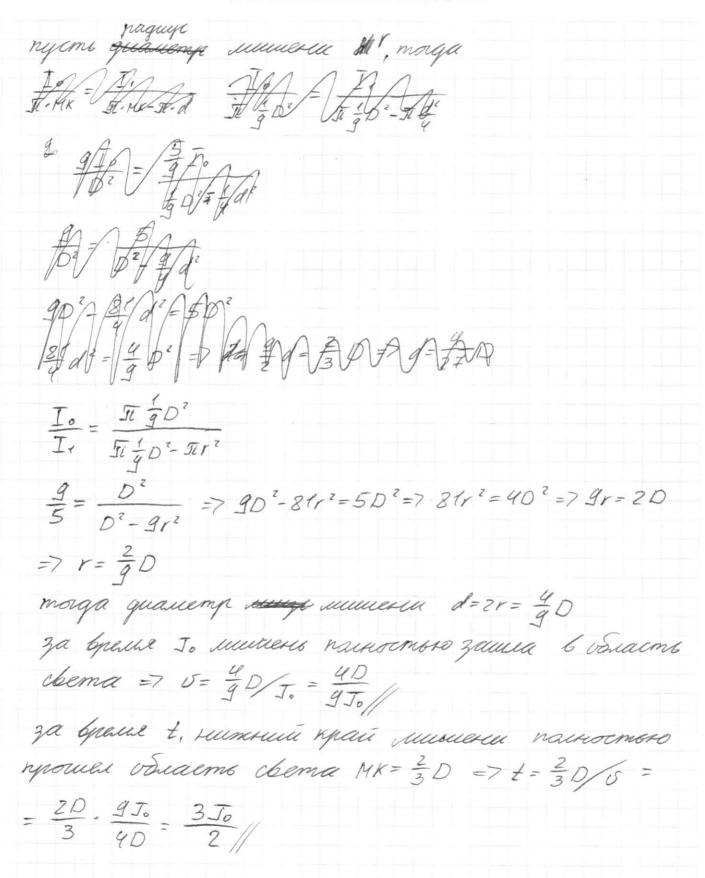
=7 pacemorture memgy 5'u12 = 3Fo-2Fo=Fo

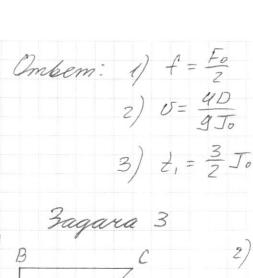
Дия Лг Т. А гвичения изобрам, а 5'-и менения телам". Запишем формуру почной мигды.

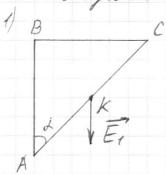
$$-\frac{1}{F_{0}} + \frac{1}{f} = \frac{1}{F_{0}} \Rightarrow \frac{1}{f} = \frac{2}{F_{0}} \Rightarrow f = \frac{F_{0}}{2}$$

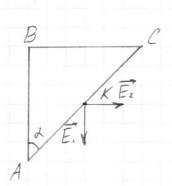
AB = D - quariemp musigne

AMKS ~ AABS ; # MK = = = = 7 MK = = AB = = D


Т. К. Шиа тока прино пропорец. имировени падагону света, то этого за пропория уменьи тока прямопропория пионации, коториро закривает мишени.




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»


ШИФР

(заполняется секретарём)

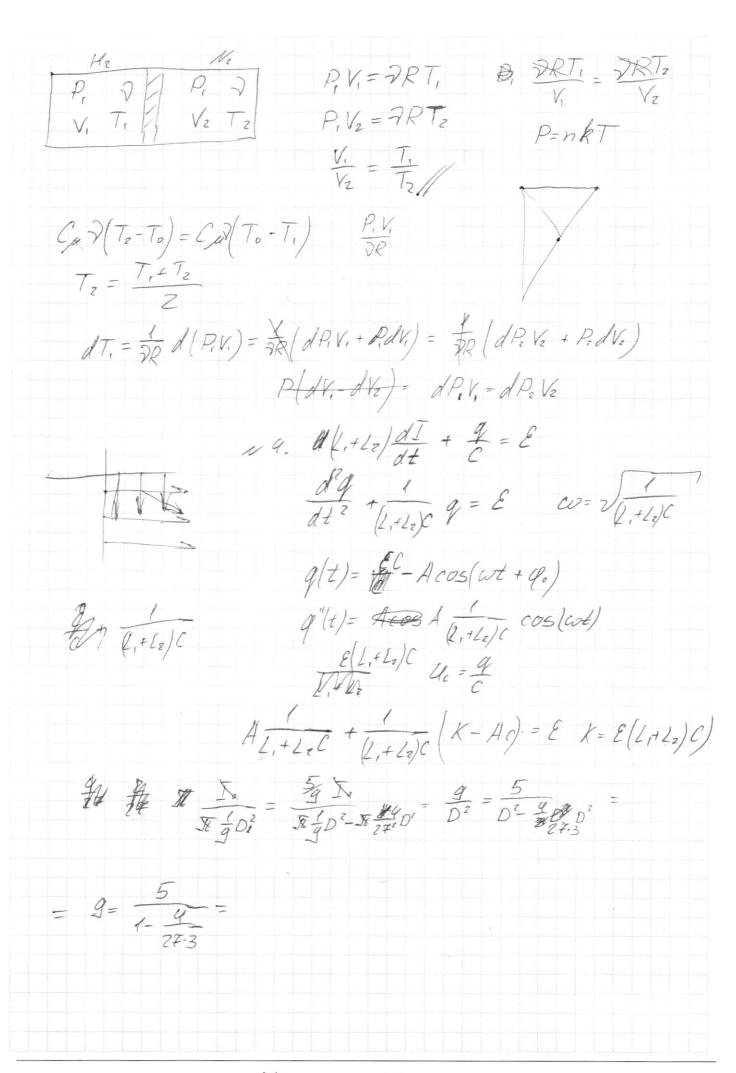
в первана смусие

60 bmopau augrae Exp = E, + E, , rege Ep - presquemupy-

rougel nove.

Ē, Ē; = LABC = 90°; |Ē, | = |Ē, | = E T.x. macmunu zape-

мени одиниковой плотностью заряда и АВ=ВС

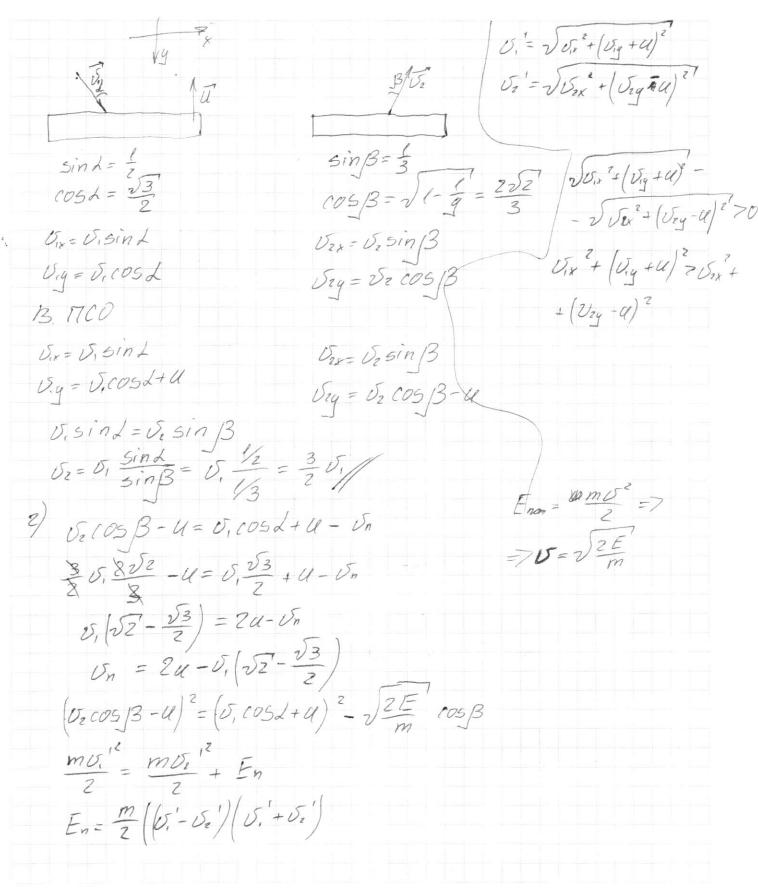

=>
$$\frac{|\vec{E},p|}{|\vec{E},p|} \cdot \frac{\vec{E}}{\sqrt{2}\vec{E}^2} = \frac{1}{\sqrt{2}}$$
; noue ybeaurumes 6 $\sqrt{2}$ pay.

Hanpan naux om Seinorier. Zapamenerioù ni-onie pabria 5 6 benyque, roy nai rie ni-me, a micene

nsioca onjeg. umpureve

19 BC = tyl; p(K; BA) = = BC ; p(K; BC) = = AB

Ombem: 1/6 02 pay.



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР	
(заполидется секпетапём)	

ПИСЬМЕННАЯ РАБОТА

□ черновик □ чистовик (Поставьте галочку в нужном поле)

