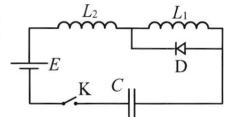

Олимпиада «Физтех» по физике, февраль 2022

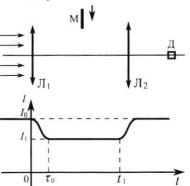
Класс 11

Вариант 11-03

Шифр (заполняется секретарём)


1. Массивная плита движется с постоянной скоростью U вертикально вверх. К плите подлетает шарик, имеющий перед ударом скорость $V_1 = 12$ м/с, направленную под углом $\alpha \left(\sin \alpha = \frac{1}{2} \right)$ к вертикали (см. рис.). После неупругого удара о гладкую горизонтальную поверхность плиты шарик отскакивает со скоростью V_2 , составляющей угол $\beta \left(\sin \beta = \frac{1}{3} \right)$ с вертикалью.

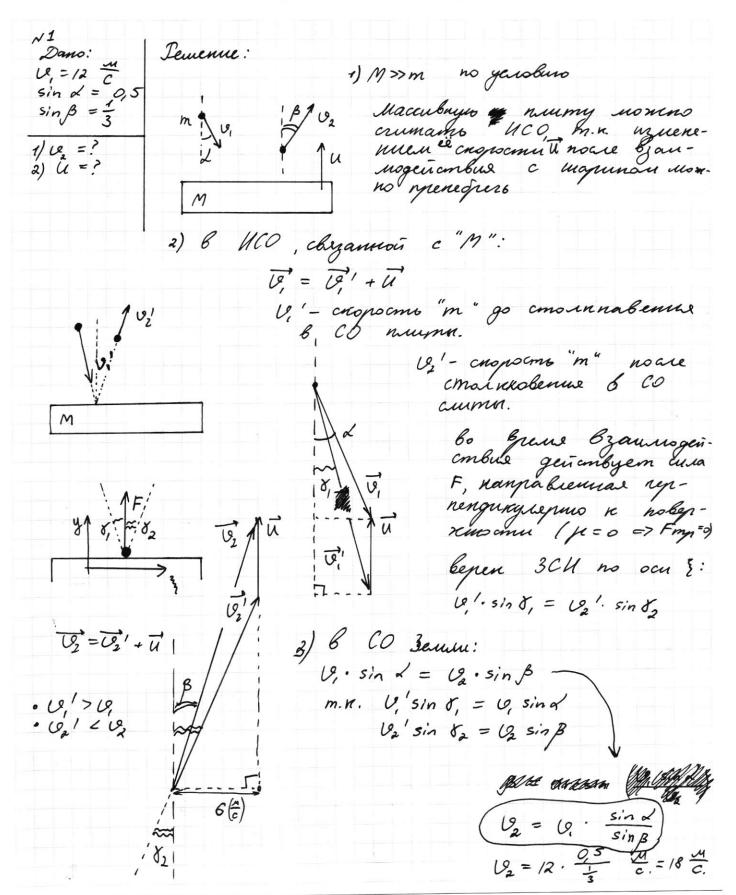
- 1) Найти скорость V_2 .
- 2) Найти возможные значения скорости плиты U при таком неупругом ударе. Действие силы тяжести за малое время удара не учитывать. Ответы допустимы через радикалы из целых чисел.
- **2.** Цилиндрический теплоизолированный горизонтально расположенный сосуд разделен на два отсека теплопроводящим поршнем, который может перемещаться горизонтально без трения. В первом отсеке находится водород, во втором азот, каждый газ в количестве v = 6/7 моль. Начальная температура водорода $T_1 = 350$ K, а азота $T_2 = 550$ K. Температуры газов начинают медленно выравниваться, а поршень начинает медленно двигаться. Газы считать идеальными с молярной теплоемкостью при постоянном объеме $C_V = 5R/2$. R = 8,31 Дж/(моль К).
 - 1) Найти отношение начальных объемов водорода и азота.
 - 2) Найти установившуюся температуру в сосуде.
 - 3) Какое количество теплоты передал азот водороду?
- **3.** Две бесконечные плоские прямоугольные пластины AB и BC перпендикулярны друг к другу и образуют двугранный угол с ребром B. На рисунке показано сечение угла плоскостью, перпендикулярной ребру B.

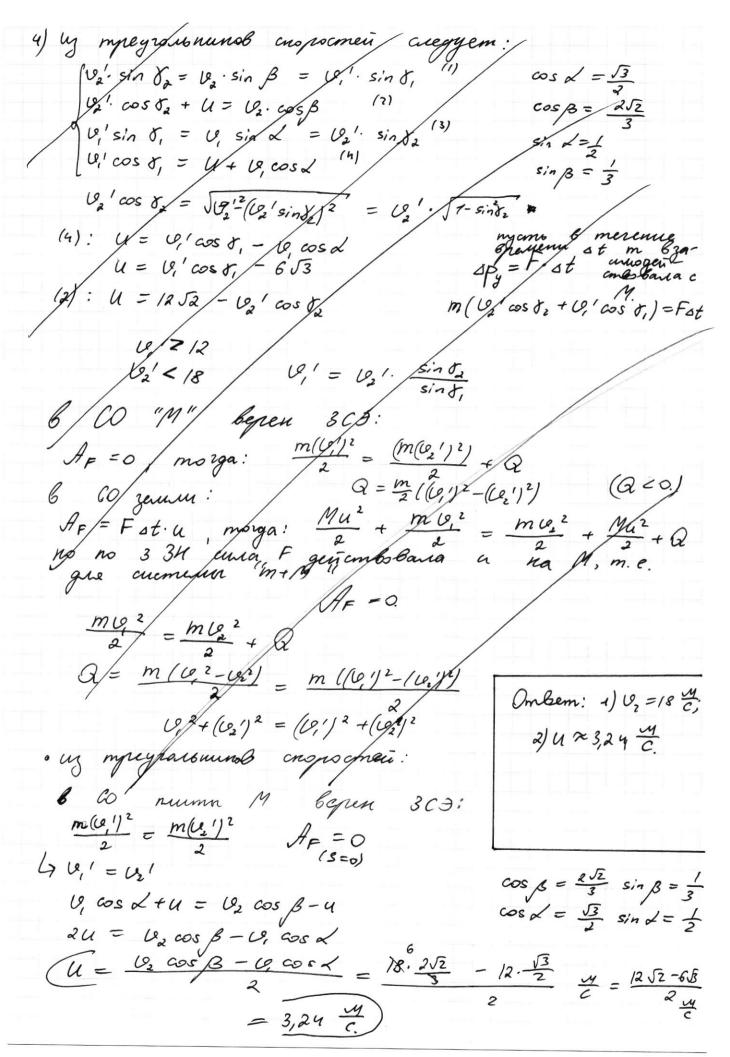


- 1) Пластина BC заряжена с постоянной поверхностной плотностью заряда. Угол $\alpha = \pi/4$. Во сколько раз увеличится напряженность электрического поля в точке K на середине отрезка AC, если пластину AB тоже зарядить с такой же поверхностной плотностью заряда?
- 2) Пластины BC и AB заряжены положительно с поверхностной плотностью заряда $\sigma_1 = 3\sigma, \sigma_2 = \sigma$, соответственно. Угол $\alpha = \pi/5$. Найти напряженность электрического поля в точке K на середине отрезка AC.
- **4.** Электрическая цепь собрана из идеальных элементов: источника с ЭДС E, катушек с индуктивностями $L_1 = 4L$, $L_2 = 3L$, конденсатора емкостью C, диода D (см. рис.). Ключ K разомкнут, конденсатор не заряжен, тока в цепи нет. После замыкания ключа возникают колебания тока в L_1 .

- 1) Найти период Т этих колебаний.
- 2) Найти максимальный ток I_{M1} , текущий через катушку L_1 .
- 3) Найти максимальный ток I_{M2} , текущий через катушку L_2 .
- **5.** Оптическая система состоит из двух соосных тонких линз Π_1 и Π_2 (см. рис.) с фокусными расстояниями $3F_0$ и F_0 , соответственно. Расстояние между линзами $2F_0$. Диаметры линз одинаковы и равны D, причем D значительно между Π_2 по току Π_3 до току Π_4 до то

меньше F_0 . На линзу Π_1 падает параллельно оси системы пучок света с одинаковой интенсивностью в сечении пучка. Прошедший через обе линзы свет фокусируется на фотодетекторе Π_1 , на выходе которого сила тока пропорциональна мощности падающего на него света. Круглая непрозрачная мишень Π_2 , плоскость которой перпендикулярна оси системы, движется с постоянной скоростью перпендикулярно оси системы так, что центр мишени пересекает ось на расстоянии Π_2 от Π_3 . На рисунке показана зависимость тока Π_3 фотодетектора от времени Π_3 (секундомер включен в момент начала уменьшения тока). Π_3 — $\Pi_$


- 1) Найти расстояние между линзой Л₂ и фотодетектором.
- 2) Определить скорость V движения мишени. 3) Определить t_1 . Известными считать величины F_0 , D, τ_0 .



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

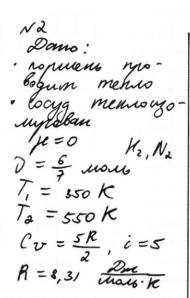
(заполняется секретарём)

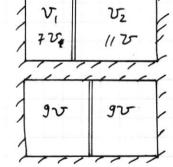
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР

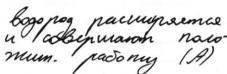
PV, = DRT, PUZ = DRT,

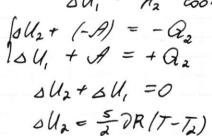
 $\frac{Pv_i}{Pv_2} = \frac{\partial RT_i}{\partial RT_i}$

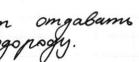

 $\frac{v_i}{v_i} = \frac{T_i}{T_2} = \frac{7}{11}$

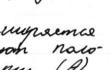

PV2 = DATEL

oběm azoma l


(заполняется секретарём)


ПИСЬМЕННАЯ РАБОТА


1				
1		7,	T_2	
1	D	2.	Vz	2
1		Hz		N-



$$\begin{pmatrix}
 T - T_2 \end{pmatrix} + (T - T_1) = 0
 2T = T_1 + T_2
 T = T_1 + T_2
 2 = 450 K$$

3) Q2 = Q mycmi v, = 7v, morga nn / Soema 112 ny como garbienne 8 P'(V,+ AV) = DR(T,+AT) mu uzuen. 05% -

$$(Q_2 > 0)$$

 Q_2 - omgannoe aromou
 non - bo mennomes.

B modat monenm bremenn ugue mennenament ogno u mo me (no mo ше температуры 5 DROTI = 5 DROTE 0T, = 0T2 =0T P/(V2-00+00+V1) = DR(T2-0T+T,+AT) $P'(v_i + v_i) = DR(T_i + T_a)$ P'(V, + 2) = P2, + P2 P'(V, + VE) = P(V, + VE) про уссе изобазтый. $A = PDV_0$ (SV. -uguenence obseina Scé breus) A=POVO = DR(T-Ti)

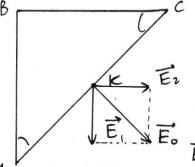
Q = = DR(T-T,) + DR(T,-T,) = = DR(T-T,) = 2493 Dm

mbem: 1) $V_i: V_2 = 7:11 = P_i: P_2$ 2) $T = \frac{T_i + T_2}{2} = 450 K$ 3) Q = = DR(T2-T1) = = 2493 Dm

N3 Dano: ~= 45° LABC = 90°

a)
$$6_1 = 36 (BC)$$

 $6_2 = 6(AB)$
 $4 = \frac{T}{5}$

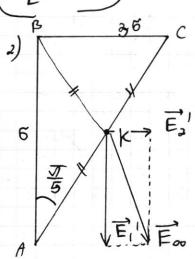

Em=?

Temenue:

BC - decnonemas тастипа, mocnas mycm6 60 -

noace:

znan sens convois пио пиности samega m macne bancen. nyemo 6 AB = 60


ШИФР

(заполняется секретарём)

$$E_{o} = \sqrt{2}E = \frac{\sqrt{2}/60}{260}$$

$$\frac{E_{o}}{E} = \sqrt{2}$$

$$\frac{E_{o}}{E} = \sqrt{2}$$

$$E_{,}' = \frac{35}{26}$$

$$E_{,}' = \frac{35}{26}$$

$$E_{,}' = \frac{6}{26}$$

$$E_{,}' = \frac{6}{26}$$

$$E_{,}' = \frac{6}{26}$$

$$E_{,}' + E_{,}'$$

$$E_{,}' = \frac{6}{26}$$

$$E_{,}' + E_{,}' + E_{,}' + E_{,}'$$

$$E_{,}' = \frac{6}{26}$$

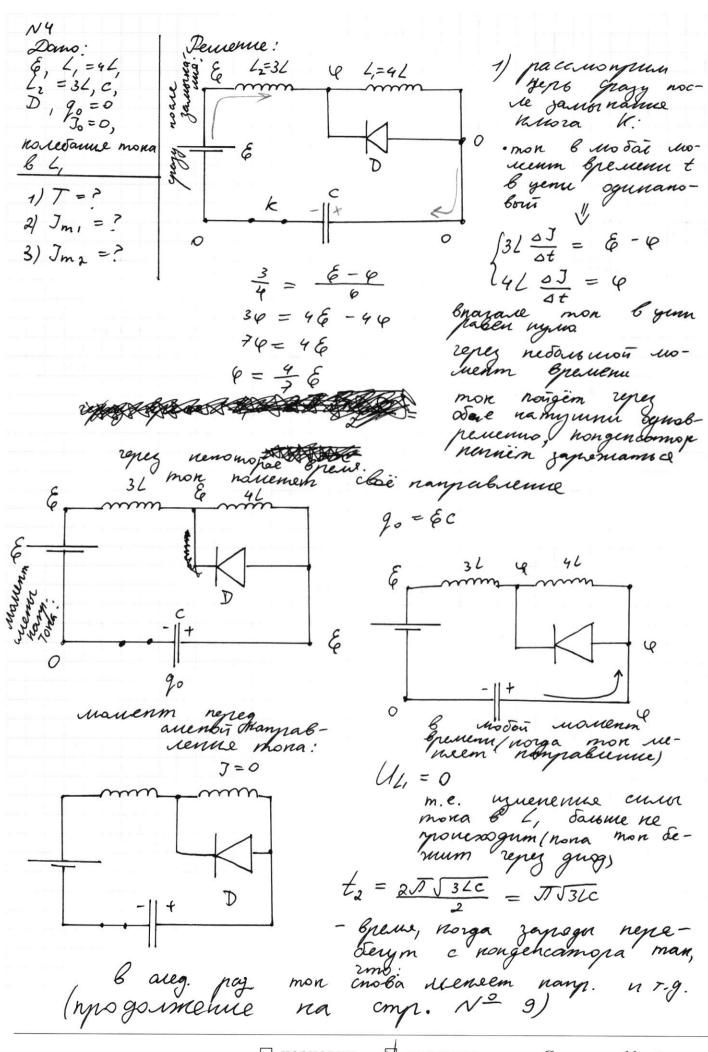
$$E_{,}' + E_{,}' + E_{,}' + E_{,}'$$

$$E_{,}' = \frac{6}{26}$$

$$E_{,}' + E_{,}' + E_{,}' + E_{,}'$$

$$E_{,}' = \frac{6}{26}$$

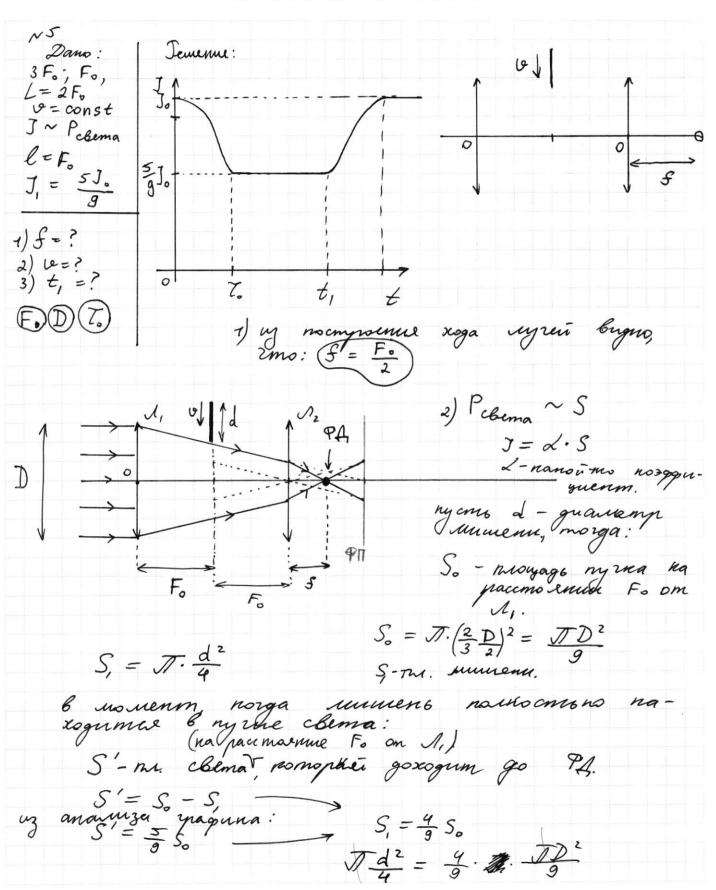
$$E_{,}' + E_{,}' + E_{,}' + E_{,}'$$


$$E_{,}' = \frac{6}{26}$$

$$E_{,}' + E_{,}' + E_{,}' + E_{,}' + E_{,}'$$

$$E_{,}' = \frac{6}{26}$$

$$E_{,}' + E_{,}' +$$


Ombem:
$$\int_{\overline{E}}^{E} = \sqrt{2}$$
;
 $2) E_{00} = \frac{6}{2\xi_{0}} \sqrt{10}$.

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

(заполняется секретарём)

$$d^{2} = \frac{4^{2}}{9^{2}} D^{2}$$

$$d = \frac{4}{9} D$$

$$T_{0} \cdot l_{0} = d$$

$$l_{0} = \frac{d}{T_{0}} =$$

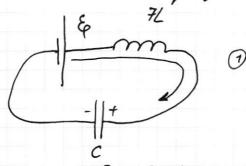
$$\left(v = \frac{d}{z_0} = \frac{4D}{9z_0} \right)$$

3) (6, - 2.) - bruss, 6 merenne nomo,

3a greene
$$t_1$$
:

 $v \cdot t_1 = \frac{2D}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{7}$
 $\frac{2}{5}$
 $\frac{2}{5}$

Ombem: 1)
$$f = \frac{F_0}{2}$$
;
2) $0 = \frac{4}{9} \frac{P_0}{Z_0}$;
3) $t_1 = \frac{3}{2} Z_0$.


$$T = t_1 + t_2 = \pi \sqrt{32c} + \sqrt{32c} = \pi \sqrt{2c} (\sqrt{7} + \sqrt{3})$$

2) Im morga, norga mon deneum repeg ode i myrunu, no 309:

$$\frac{3(J_{mi})^{2}}{2} + \frac{4(J_{mi})^{2}}{2} = \frac{Cu^{2}}{2} = \frac{Cu_{max}^{2}}{2}$$

$$\frac{7(J_{mi})^{2}}{2} + \frac{Cu^{2}}{2} = \frac{Cu_{max}^{2}}{2} \quad U_{max} = \frac{E}{E}$$

mon demum yez a m.

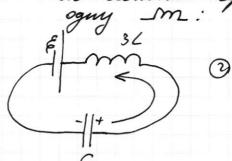
no 3 C I (que @):

$$\mathcal{A}_{ucm} = \mathcal{W}_{L} + \mathcal{W}_{c}$$

$$q \mathcal{E} = \frac{7LJ^{2}}{2} + \frac{qU}{2}$$

$$96 = \frac{76J_1^2}{2} + \frac{9^2}{3c}$$

$$W_L = 9 & -\frac{9^2}{2C} = \frac{723^2}{2}$$


rapadara, $g_{\mathcal{B}} = \frac{-\mathcal{E} \cdot 2c}{-2} = \mathcal{E}c$ $W_{\ell \, \text{max}} = W_{\ell}(J_{\ell \, \text{max}}) = W_{\ell}(\mathcal{E}c)$

$$\frac{72J_{m_1}^2}{2} = \frac{\xi^2c}{2}$$

$$J_{m_1}^2 = \frac{c\xi^2}{2}$$

$$\int_{m_1} = \underbrace{\xi \cdot \sqrt{\frac{C}{7L}}}_{2L}$$

Ombem: 1) $T = \pi \sqrt{2c} (\sqrt{7} + \sqrt{3})$. 2) $J_{m_1} = \mathcal{E} \cdot \sqrt{\frac{c'}{72}}$. 3) $J_{m_2} = \mathcal{E} \cdot \sqrt{\frac{3}{32}}$.

no $3C \ni (gue @)$:
anaxomrno paccymgae $W_{L max} = W_{L} (J_{2 max}) = W_{L}(\xi)$ $\frac{\xi^{2}C}{3} = \frac{3L(J_{2m})^{2}}{3}$

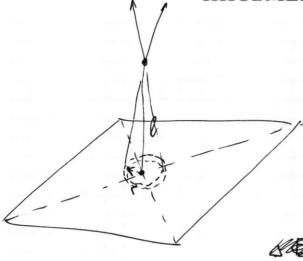
$$W_L = -\frac{g^2}{2c} + \epsilon g$$

$$\int_{ma} = \xi \cdot \sqrt{\frac{c'}{3L}}$$

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

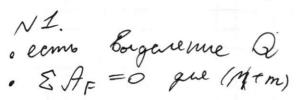
ШИФР	

(заполняется секретарём)



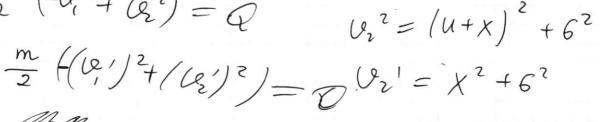
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР


(заполняется секретарём)

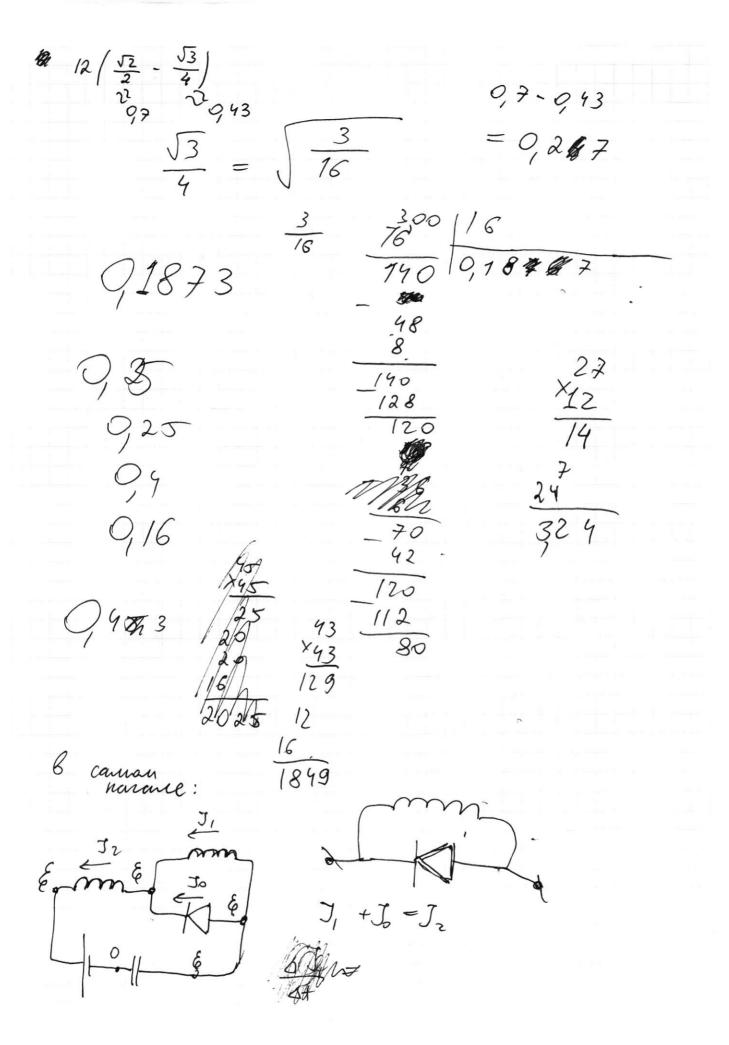
ПИСЬМЕННАЯ РАБОТА

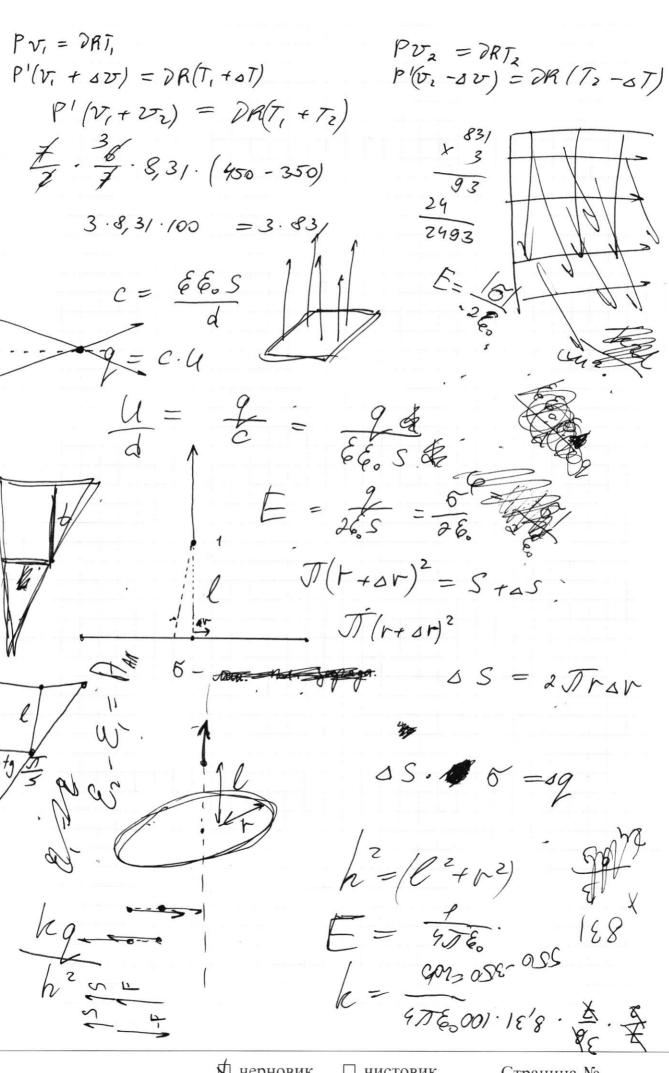
Dryor) = STAC 05=2/1/2r


19= 6. 15 = 2 Trar6=

$$\mathcal{E}_{1} = \frac{m v_{1}^{2}}{2} + \frac{M u^{2}}{2} + Q$$

$$\mathcal{E}_{2} = \frac{m v_{2}^{2}}{2} + \frac{M u^{2}}{2} + \frac{M u^{2}}{2}$$


 $\frac{m}{2}\left(-4^{2}+4^{2}\right)=Q$



X

(b21)2-(01)2 = 02 - Ce2 (6) 3/-(01)2 = (ce/2-(ce,1)2

10 = (U+X)2+62- x2-62 = = 2 UX + 42

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

$\left(\frac{\left(\frac{1}{2}\sin \theta_{2}\right)^{2}}{\left(\frac{1}{2}\sin \theta_{1}\right)^{2}}\right)^{2}$ $\left(\frac{\left(\frac{1}{2}\cos \theta_{1}\right)^{2}}{\left(\frac{1}{2}\cos \theta_{1}\right)^{2}}\right)^{2}$	$U_1 = 18$ $U_2 = 18$
$ (v_2'\cos s_2)^2 = (v_2\cos \beta - 4)^2 $ $ (v_1'\sin s_1)^2 + (v_2\cos \beta - 4)^2 = (v_2')^2 $	
(12501)	H2 Mi
$(2, \sin 2)^2 + (4 + 12, \cos 2)^2 = (2, 1)^2$ $4 + 4 \cos 2 = 4 \cos 2 $	
$U_{1} \sin^{2} x + U_{1}^{2} + 2U_{1} \cos x + U_{1}^{2} \cos x$ $U_{2} \sin^{2} x + U_{3}^{2} \cos x + U_{4}^{2} \cos x$ $U_{3} \sin^{2} x + U_{4}^{2} + 2U_{1} U_{1} \cos x + U_{2}^{2} \cos x$	
1 cos / = 1/2 1/2 1/2/3/moz 2	119C = 209
$U_2'\sin t_2 = 181/2 = U_1' \cdot \sin t_1$ $U_2'\cos t_2 + U = 12\sqrt{2}$	ackering
18 205 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= 63 - 513 · 52
(2) (2) (2)	< (2)
1 (10-21) AC = (00-20) of I	29C+ 21 = -28d + Ley
$\frac{1}{\sqrt{2}} = 0$ $\cos \phi = \frac{1}{\cos^2 \phi} \cos \phi$ $\cos \phi = \frac{1}{\sqrt{2}} \cos \phi$ $\cos \phi = \frac{1}{\sqrt{2}} \cos \phi$ $\cos \phi = \frac{1}{\sqrt{2}} \cos \phi$	+ 'n 9 + =n0