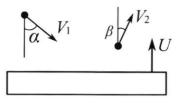
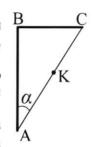
Олимпиада «Физтех» по физике, февраль 2022

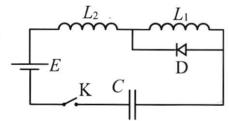
Класс 11


Вариант 11-03

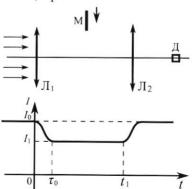
Шифр


(заполняется секретарём)

1. Массивная плита движется с постоянной скоростью U вертикально вверх. К плите подлетает шарик, имеющий перед ударом скорость $V_1 = 12$ м/с, направленную под углом $\alpha = \frac{1}{2}$ к вертикали (см. рис.). После неупругого удара о гладкую


углом $\alpha \left(\sin \alpha = \frac{1}{2} \right)$ к вертикали (см. рис.). После неупругого удара о гладкую горизонтальную поверхность плиты шарик отскакивает со скоростью V_2 , составляющей угол $\beta \left(\sin \beta = \frac{1}{3} \right)$ с вертикалью.

- 1) Найти скорость V_2 .
- U При таком неупругом ударе. Действие силы тяжести за малое время удара не учитывать. Ответы допустимы через радикалы из целых чисел.
- **2.** Цилиндрический теплоизолированный горизонтально расположенный сосуд разделен на два отсека теплопроводящим поршнем, который может перемещаться горизонтально без трения. В первом отсеке находится водород, во втором азот, каждый газ в количестве v = 6/7 моль. Начальная температура водорода $T_1 = 350$ K, а азота $T_2 = 550$ K. Температуры газов начинают медленно выравниваться, а поршень начинает медленно двигаться. Газы считать идеальными с молярной теплоемкостью при постоянном объеме $C_V = 5R/2$. R = 8,31 Дж/(моль·К).
 - 1) Найти отношение начальных объемов водорода и азота.
 - 2) Найти установившуюся температуру в сосуде.
 - 3) Какое количество теплоты передал азот водороду?
- **3.** Две бесконечные плоские прямоугольные пластины AB и BC перпендикулярны друг к другу и образуют двугранный угол с ребром B. На рисунке показано сечение угла плоскостью, перпендикулярной ребру B.
- 1) Пластина BC заряжена с постоянной поверхностной плотностью заряда. Угол $\alpha = \pi/4$. Во сколько раз увеличится напряженность электрического поля в точке K на середине отрезка AC, если пластину AB тоже зарядить с такой же поверхностной плотностью заряда?
- 2) Пластины BC и AB заряжены положительно с поверхностной плотностью заряда $\sigma_1 = 3\sigma, \, \sigma_2 = \sigma$, соответственно. Угол $\alpha = \pi/5$. Найти напряженность электрического поля в точке K на середине отрезка AC.

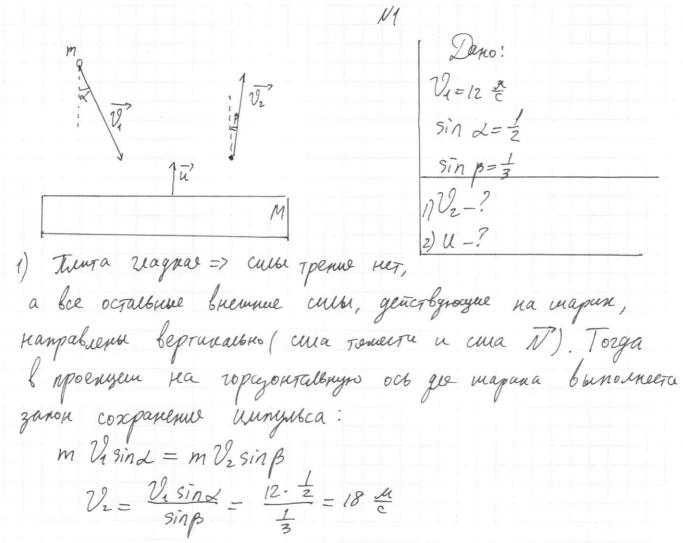


- **4.** Электрическая цепь собрана из идеальных элементов: источника с ЭДС E, катушек с индуктивностями $L_1 = 4L$, $L_2 = 3L$, конденсатора емкостью C, диода D (см. рис.). Ключ K разомкнут, конденсатор не заряжен, тока в цепи нет. После замыкания ключа возникают колебания тока в L_1 .
 - 1) Найти период T этих колебаний.
 - 2) Найти максимальный ток I_{M1} , текущий через катушку L_1 .
 - 3) Найти максимальный ток I_{M2} , текущий через катушку L_2 .

5. Оптическая система состоит из двух соосных тонких линз Π_1 и Π_2 (см. рис.) с фокусными расстояниями $3F_0$ и F_0 , соответственно. Расстояние между линзами $2F_0$. Диаметры линз одинаковы и равны D, причем D значительно

меньше F_0 . На линзу Π_1 падает параллельно оси системы пучок света с одинаковой интенсивностью в сечении пучка. Прошедший через обе линзы свет фокусируется на фотодетекторе Π_2 , на выходе которого сила тока пропорциональна мощности падающего на него света. Круглая непрозрачная мишень Π_2 , плоскость которой перпендикулярна оси системы, движется с постоянной скоростью перпендикулярно оси системы так, что центр мишени пересекает ось на расстоянии Π_2 от Π_3 . На рисунке показана зависимость тока Π_3 фотодетектора от времени Π_4 (секундомер включен в момент начала уменьшения тока). Π_4 = Π_4 от Π_4 с

- 1) Найти расстояние между линзой Π_2 и фотодетектором.
- 2) Определить скорость V движения мишени. 3) Определить t_1 . Известными считать величины F_0 , D, τ_0 .



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

2) Всполний задачу о увишений марака наветречу пите:

то то то то то то не изавительной пить не изивнеется по по пересеть в С.О., свезочную с пештой, тогда шарих будет лететь к пите со схоростью Уни. Посее удара ок отсканивает со схоростью Уни. Посее удара ок отсканивает по неупруши. В системе отстета, свугочной с Земей, его схорость отскома будет мету Унги и и, т.к. в нашей за-

gare ygap reynpynin.
Вернеми к камей задоче. Перпендиниеркае поверк-
ности составлочая спорости отспона будет немать менду
U u Vo, +2u, rge Vo, - nepresignagiepau no вержиости
составленоцая начанной спорости.
O2 COSB 3'
V1 cos 2 + 24 > V2 cos B > U
u > 2/2 cosp - Vacose
U_{rax} , $V_{2}cosp > u > \frac{V_{2}cosp - V_{4}cos\lambda}{2}$
$18 \cdot \frac{2\sqrt{2}}{3} > u > \frac{18 \cdot \frac{2\sqrt{2}}{3} - 12 \cdot \frac{\sqrt{3}}{2}}{2}$
3
12 J2 > 4 > 6 J2 - 3J3
При таких значениех и возношем удар, описанный
l zagore.
0,6e7: 1) 18 c
2) $U \in (6\sqrt{2} - 3\sqrt{3})$ $U \in (6\sqrt{2} - 3\sqrt{3})$; $(2\sqrt{2})$.
1/2
$V = \frac{6}{7} \text{ woll}$
1=350 4
$J_2 = 550 k$ V_1 V_2
$\hat{l} = \frac{5}{2}$ \hat{l}
$\frac{V_1}{V_2}$ -? $\frac{1}{V_2}$ $\frac{1}{V_2}$
T-?
Q-?

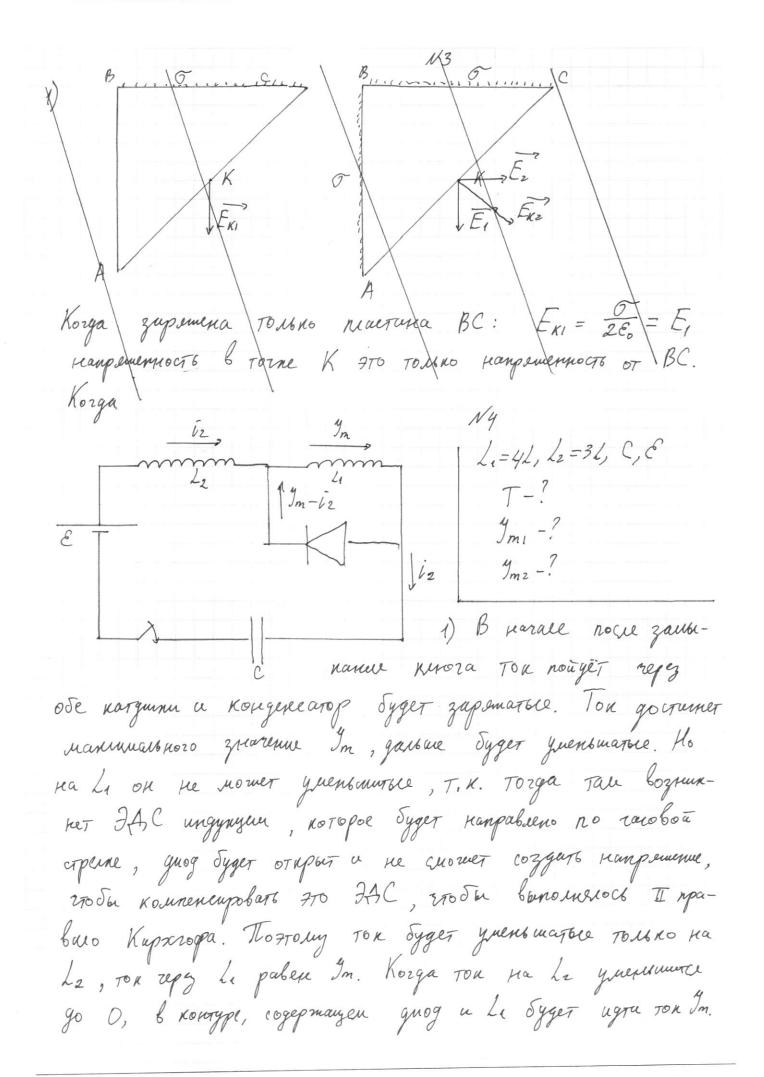
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

1) 9p-une Mengeneeba-Knaneupona:	
$P_1V_1 = JRT_1 - H_2$ Dabienne ogninaro 60, T. K. noka Ten $P_1V_2 = JRT_2 - N_2$ neparypu ne marain bupabinbarone, n	r-
$\frac{V_4}{V_2} = \frac{\overline{I}_1}{\overline{I}_2}$	
$\frac{V_1}{V_2} = \frac{350}{550} = \frac{7}{11}$	
2) Tyers οδείν leero cocyga V1+V2=18 V0, τουда V1=71 Tephoe καταιο τερνοσματικη:	16 Vo
Q _H = A _H + ΔU _H - que bogopoga. В понце тенпературы и Q = A _H + ΔU _H - que bogopoga. В понце тенпературы и Будут рабим (из ур-им Менденева-Киан Водород полугает томко Q тенготы от адота.	eū-
Водород полугает только Q темоты от адота. $A_{H} = P_{1} + P_{2} \cdot (V_{24} - V_{14}) = (P_{1} + P_{2}) \cdot V_{0}$, $V_{2H} = 9V_{0}$, $V_{1H} = 7V_{0}$	
$Q_{N} = A_{N} + \alpha u_{N}$ $A_{N} = P_{1} + P_{2} (V_{2N} - V_{N}) = (P_{1} + P_{2}) \cdot (-V_{0}) = -A_{y} V_{2N} = 9V_{0}, V_{1N} = 11V_{0}$	
Agot organit Q remoth bogopogy:	,
$Q_n = -Q_n$.	
$-Q = -A_{H} + \Delta U_{N} = > \Delta U_{N} = \Delta U_{H} $ $\frac{5}{2} UP(T - T_{1}) = \frac{5}{2} UP(T_{2} - T)$	
$T-T_1 = \sqrt{2}-1$ $T = \sqrt{11+72} = 450 \text{ K}$	

3) Первое нагаю термодинашки: (дле водорода) Gy= Ay+ AUH Au = (P,+P2) Vo = P1 Vo + P2 Vo Согласно ур-то Мендиева-Клапикрона: P1. 710 = OFT1 => P1/0 = UFT1 Par 41 p2.916 = ORT => p21/0 = ORT AH = DRTI + DRT all = 5 DR (T-T1) Qn = 5 OR (T-T1) + URT1 + URT = 5.6. P. 100+ $+\frac{6}{2} \cdot R.350 + \frac{6}{2} \cdot R.450 = 300R = 2493 Du$ 1) # OrbeT: 2) 450 K 3) 2493 Dun 15 Fo, D, To, 4= 32 f2 -? 22-7 t, -? Ha puryine modpamen xog npannix ryren ngrna. 1) Tosse rposcourgenue первой мицы свет соберетсе в се допусе на расстоя fr = 3F6 or Fron unexa. Dannoe mospamenne monero



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

равать как иниции предиет для второй миную, тогум рак- иголише от предлега до этой миную $d_z = -F_0$. Рормуна токлой минум: $\frac{1}{d_z} + \frac{1}{f_z} = \frac{1}{F_0}$ $\frac{1}{-F_0} + \frac{1}{f_z} = \frac{F_0}{F_0}$ $\frac{1}{-F_0} + \frac{1}{f_z} = \frac{1}{2}$ $\frac{1}{-F_0} + \frac{1}{f_z} = \frac{1}{f_z}$ $\frac{1}{-F_0} + \frac{1}{f_z} = \frac{1}{f_z}$ $\frac{1}{f_z} + \frac{1}{f_z} = \frac{f_z}$ $\frac{1}{f_z} + \frac{1}{f_z} = \frac{1}{f_z}$ $\frac{1}{f_z} + \frac{1}{f_z$	
Рормуга токной линун: $\frac{1}{d_2} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{-f_0} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{-f_0} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{-f_0} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{f_2} = \frac{5}{2}\frac{5}{2}$, 170 видно на гертеше. 2) $J_1 = \frac{5}{9}\frac{5}{6} = >$ мишени перирывает $\frac{4}{9}$ выгового потока. 7. е. площадя поян мишени и площадь пучна на расстоянии F_0 от перьой мищени и диаметр пучна и этом менте мак $\frac{2}{3}$. 1/2 подобия а диаметр пучна на расстоянии F_0 от M : $D_1 = D \cdot \frac{2f_0}{3f_0} = \frac{2}{3}D$ $D_2 = \frac{2}{3} = 7 D_{11} = \frac{4}{9}D$, $D_{11} - guanetp$ мишени. $V \cdot T_0 - D_{11}$ $V = \frac{D_{11}}{2} = \frac{4}{9}\frac{D}{20}$ 3) $T_1 - $ момент, когда мишени понец мишени прошём весь путок, $T_1 \cdot P_1$ расстояние D_1 , со споростию D_2 : $T_1 = \frac{D_1}{2} = \frac{2}{3}\frac{D}{20} = \frac{3}{2}\frac{D}{20}$ $T_2 = \frac{2}{3}\frac{D}{20} = \frac{3}{2}\frac{D}{20}$	ривать как минит предмет дле второй мунум, тогда рас-
Рормуга токной ликун: $\frac{1}{d_2} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{-f_0} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{-f_0} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{-f_0} + \frac{1}{f_2} = \frac{1}{f_0}$ $\frac{1}{2} = \frac{5}{9} \frac{1}{9} = >$ мишеня перирывает $\frac{4}{9}$ светового потока. 7. е. площадя поян лишени и площадь путка на расстоянии F_0 от первой мицер путка и этом менте мак $\frac{2}{3}$. $\frac{1}{3}$ подобия а дианетр путка на расстоянии F_0 от M : $D_1 = D \cdot \frac{2f_0}{3f_0} = \frac{2}{3}D$ $D_2 = \frac{2}{3} = 7D_{11} = \frac{4}{9}D$, $D_{11} - guanetp$ мишени. $V \cdot T_0 - D_{11}$ $V \cdot T_0 - D_{12}$ $V \cdot T_0 - D_{13}$ $V \cdot T_0 - D_{14}$ $V \cdot T_0 - D_{15}$	стояние от преднета до этой миды $d_z = - F_0$.
$f_z = \frac{F_0}{2}$, 270 вадно на гертеме. 2) $g_1 = \frac{5}{9}g_0 = >$ лишеня перепрывает $\frac{1}{9}$ светового потока. Т.е площадя поя лишени и площадь пута на расстояни F_0 от первой лицел относется как $\frac{1}{9}$, глачит диашетр лута в этом лиете как $\frac{2}{3}$. Уз подобие а диашетр пута на расстоянии F_0 от M : $D_1 = D \cdot \frac{2F_0}{2F_0} = \frac{2}{3}D$ $D_2 = \frac{2}{3} = 7$ $D_4 = \frac{4}{9}D$, $D_{14} - g_{14}$ лишени. $D_4 = \frac{1}{2}D_{14} = \frac{4}{9}D$ 3) $D_{14} - g_{14}$ лишеня, когда нишиши конец лишени прошёл весь путок, T_1 . расстояние D_1 , со споростно D_2 : $D_2 = \frac{1}{2}D_2 = \frac{2}{3}D_3 = \frac{3}{2}D_4$ $D_3 = \frac{1}{2}D_4 = \frac{4}{3}D_5$ $D_4 = \frac{1}{2}D_5$ $D_5 = \frac{1}{2}D_5$ $D_6 = \frac{1}{2}D_5$ $D_7 = \frac{1}{2}D_5$	\sim
2) $J_{1} = \frac{3}{9}J_{0} = > \mu \mu$	$\frac{1}{-F_0} + \frac{1}{F_2} = \frac{1}{F_0}$
2) $J_{1} = \frac{3}{9}J_{0} = > \mu \mu$	$f_2 = \frac{f_0}{2}$, t_{70} bugno na reprene.
Fo ot reploi surger othocote har $\frac{7}{9}$, grants graves prime in quality nyma h from well wax $\frac{2}{3}$. It nogotive a quarity nyma ha partsolum Fo ot M: $D_1 = D \cdot \frac{2F_0}{3F_0} = \frac{2}{3}D$ $D_2 = \frac{2}{3} = 7D_2 = \frac{4}{9}D$, $D_3 = 0$ quarity summen. $V \cdot F_0 = D_2 = 0$ $V \cdot F_0 = D_3 = 0$ $V \cdot F_0 = 0$ $V \cdot $	2) $J_1 = \frac{5}{9}J_0 = > \text{ uniment repensates } \frac{4}{9} \text{ cheroboro notona.}$
лишери и дианетр пута в этом менте как $\frac{2}{3}$. 1/2 подоби д дианетр пута на расстоянии F_0 от M : $D_1 = \mathcal{D} \cdot \frac{2F_0}{3F_0} = \frac{2}{3}\mathcal{B}$ $\frac{D}{M} = \frac{2}{3} = 7 \mathcal{D}_M = \frac{4}{9}\mathcal{D}$, $\mathcal{D}_M = gnanetp$ мишери. $\mathcal{V} \cdot \mathcal{F}_0 = \mathcal{D}_M$ $\mathcal{V} = \frac{D}{F_0} = \frac{4}{9}\frac{\mathcal{D}}{F_0}$ 3) $\mathcal{T}_1 - $ момент, когда мишери момец мишери промен весь путок, $f.e.$ расстояние \mathcal{D}_1 , со споростию \mathcal{D} : $f.e.$ $f.e.$ расстояние $f.$ со спорости $f.$ $f.e.$	T. e. nocyage post unweren a procyage nyma sea pacerosnum
	Fo от первой менум относетсе нап д, значит диаметр
	unueur a quallet p nyma & son meete nak 3.
$\mathcal{D}_{1} = \mathcal{D} \cdot \frac{2F_{0}}{3F_{0}} = \frac{2}{3}\mathcal{D}$ $\mathcal{D}_{1} = \frac{2}{3} = 7 \mathcal{D}_{11} = \frac{4}{9}\mathcal{D} , \mathcal{D}_{11} - \mathcal{G}_{11} = \mathcal{G}_{11}$ $\mathcal{V} \cdot \mathcal{T}_{0} = \mathcal{D}_{11}$ $\mathcal{V} = \frac{\mathcal{D}_{11}}{\mathcal{T}_{0}} = \frac{4}{9}\frac{\mathcal{D}_{12}}{\mathcal{T}_{0}}$ $3) \mathcal{T}_{1} - \mathcal{G}_{11} = \mathcal{G}_{11}, \mathcal{G}_{12} = \mathcal{G}_{11} = \mathcal{G}_{11} = \mathcal{G}_{12} = \mathcal{G}$	Из подобие а диачетр пума на расстоении Fo от M:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$V \cdot \overline{T_0} = \mathcal{D}_{u}$ $V = \frac{\mathcal{D}_{u}}{\overline{T_0}} = \frac{4}{9} \frac{\mathcal{D}}{\overline{T_0}}$ 3) $T_1 - \text{modent, korga rummum notely rummum npoměr lech nyrok, T \cdot \ell. paretoenne \mathcal{D}_1, co cnopoctino \mathcal{D}: t_1 = \frac{\mathcal{D}_1}{\mathcal{D}} = \frac{\frac{2}{3}\mathcal{D}}{\frac{4}{9}\mathcal{D}} = \frac{3}{2}\mathcal{D} 0 \cdot 62 \cdot 1 \frac{5}{2} \frac{4}{9} \cdot \frac{\mathcal{D}}{T_0}$	
$ \mathcal{V} = \frac{\mathcal{D}_{in}}{70} = \frac{4}{9} \frac{\mathcal{B}}{70} $ 3) T_{i} - nonent, norga nummut noney numero npoměr lech nyron, $T.\ell$. panetospue \mathcal{D}_{i} , co cnopoctoro \mathcal{V} : $ t_{i} = \frac{\mathcal{D}_{i}}{2^{9}} = \frac{\frac{2}{3}\mathcal{D}}{\frac{4}{9}\frac{9}{70}} = \frac{3}{2}\mathcal{D}_{i} \qquad \text{Other: } 1) \frac{f_{0}}{2} $ $ 2) \frac{4}{9}\frac{\mathcal{D}}{70} $	$\frac{Du}{D_1} = \frac{2}{3} = 7$ $Du = \frac{4}{9}D$, $Du - guardesp$ summen.
$ \mathcal{V} = \frac{\mathcal{D}_{in}}{70} = \frac{4}{9} \frac{\mathcal{B}}{70} $ 3) T_{i} - nonent, norga nummut noney numero npoměr lech nyron, $T.\ell$. panetospue \mathcal{D}_{i} , co cnopoctoro \mathcal{V} : $ t_{i} = \frac{\mathcal{D}_{i}}{2^{9}} = \frac{\frac{2}{3}\mathcal{D}}{\frac{4}{9}\frac{9}{70}} = \frac{3}{2}\mathcal{D}_{i} \qquad \text{Other: } 1) \frac{f_{0}}{2} $ $ 2) \frac{4}{9}\frac{\mathcal{D}}{70} $	29. 7- Du
3) T_1 - nonent, norga pummui noney lumenu npomé; lech nyron, $T.\ell$. paretoenne \mathcal{D}_1 , co cnopoctoro \mathcal{D}^2 : $t_1 = \frac{\mathcal{D}_1}{\mathcal{D}} = \frac{\frac{2}{3}\mathcal{D}}{\frac{4}{3}\mathcal{D}} = \frac{3}{2}\mathcal{D}^{\circ} \qquad \begin{array}{c} \mathcal{D}_1 \\ \mathcal{D}_2 \\ \mathcal{D}_3 \end{array}$ $= \frac{2}{2}\mathcal{D}^{\circ} = \frac{2}{2}\mathcal{D}^{\circ} \qquad \begin{array}{c} \mathcal{D}_2 \\ \mathcal{D}_3 \end{array}$ $= \frac{2}{2}\mathcal{D}^{\circ} = \frac{2}{2}\mathcal{D}^{\circ} \qquad \begin{array}{c} \mathcal{D}_3 \\ \mathcal{D}_3 \end{array}$	
beck nyron, T.e. paresonne \mathcal{D}_1 , co enopocitio \mathcal{D} : $t_1 = \frac{\mathcal{D}_1}{\mathcal{D}} = \frac{\frac{2}{3}\mathcal{D}}{\frac{4}{9}\mathcal{D}} = \frac{3}{2}\mathcal{D}$ $\frac{2}{9}\frac{4}{20}$ $2) \frac{4}{9}\frac{2}{20}$	
beck nyron, T.e. paresonne \mathcal{D}_1 , co enopocitio \mathcal{D} : $t_1 = \frac{\mathcal{D}_1}{\mathcal{D}} = \frac{\frac{2}{3}\mathcal{D}}{\frac{4}{9}\mathcal{D}} = \frac{3}{2}\mathcal{D}$ $\frac{2}{9}\frac{4}{20}$ $2) \frac{4}{9}\frac{2}{20}$	3) Ti- novent, norga semmun novely semmen npomér
9 20	весь путок, Т.е. расетоение Di, со споростью 29:
9 20	$t_1 = \frac{\mathcal{D}_1}{3} = \frac{3}{3} \mathcal{D}_2 = \frac{3}{3} \mathcal{D}_3$
	$\frac{49}{9}$ $\frac{2}{2}$ $\frac{4}{9}$ $\frac{9}{2}$

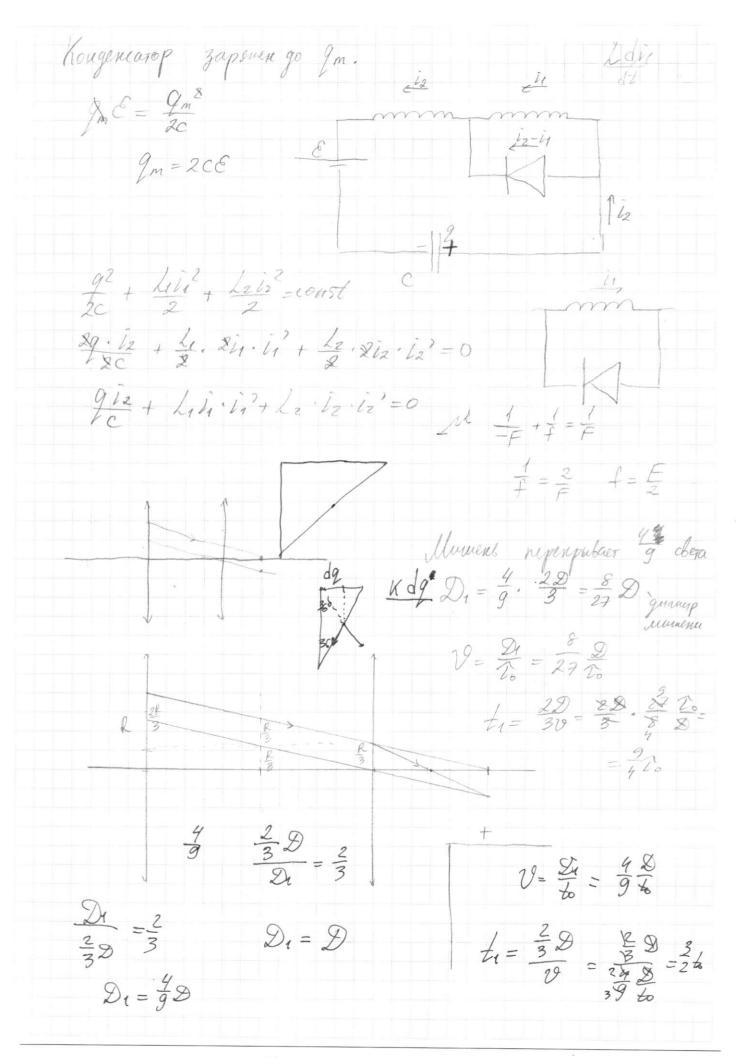
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

Toron Tox nougi, в обратион Li lizt In направлении, достинет мани-
Toton Tox nougi, 6 oбратися
ST 12+ In nanpablemen, gootamet manu-
regna J2 u guentamerce go
Tiz 0. 3agen bie nobjeptera.
Boë 200 bpeur 1611 repsy 4
равен Тт , т. х. он не может ученьшитьсе. Поэтому период
Konedamin T=0
2) Manuelle usur TOK repez Le paben Im. Im = Im.
Закон изменение энергии: (метду нагагом и моментом $g = \frac{4L \frac{g_{mi}^2}{2}}{2} + \frac{3L \frac{g_{mi}^2}{2}}{2} + \frac{g^2}{2c}$
To II npabay Kupscropa: $\mathcal{E} - \frac{1}{2} \frac{d Lz}{dt} - L_1 \frac{d \dot{u}}{dt} = \frac{9}{6}$
Korga $\overline{i}_2 = \overline{i}_4 = J_{m_1}$ $C = \frac{2}{c}$ $q = CC$
Korga $\overline{i}_2 = \overline{i}_1 = \overline{j}_{m_1}$ $C = \frac{1}{2}$ $g = CC$ $CC^2 = \frac{7 \cancel{j}_{m_1}}{\cancel{z}} + \frac{CC^2}{\cancel{z}}$
$CE^2 = 72 J_{m_1}^2$
$y_{m_1} = \sqrt{\frac{CE^2}{72}} = E \cdot \sqrt{\frac{C}{72}}$
3) Вправо через 22 миниманный ток равек Ут. Найдёль миниманный ток влево. Для этого найдём мине. заред ком-
маниманный ток влево. Для этого найдём мим. заряд кон-
glicaropa.
ЗСЭ (менеду Запон приемение экерни (метду кагагом
u monenton q=qm):

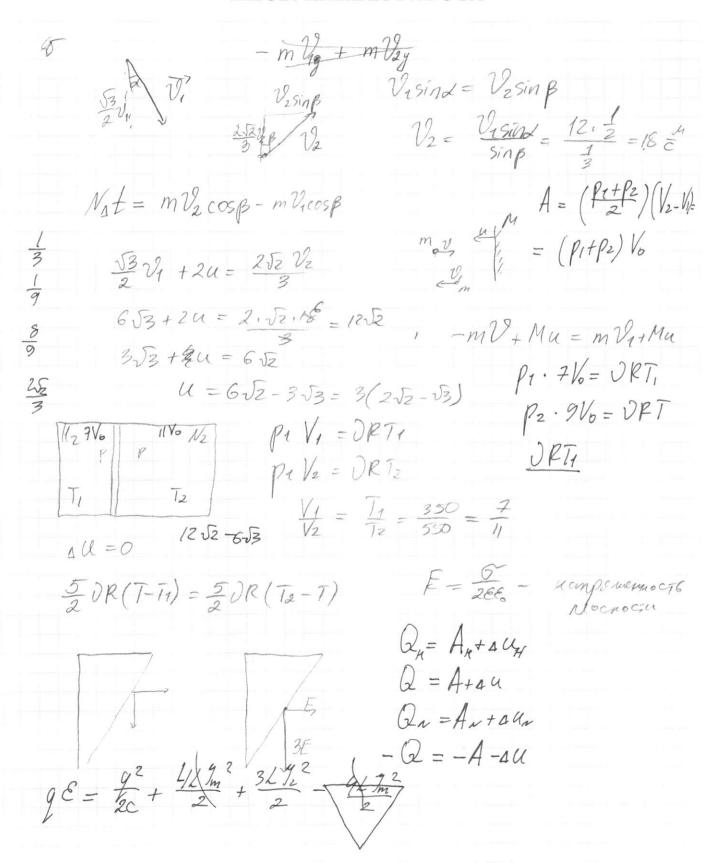
9
$$m = \frac{4 \sqrt{1} m_1^2}{2} + \frac{1}{2c}$$
 $\frac{1}{2c} - c \cdot 9m + \frac{4 \sqrt{2} m_1^2}{2c} = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2c} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m \cdot c^2 + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m \cdot c^2 + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m \cdot c^2 + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 9m \cdot c^2 + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 2c \cdot 2c \cdot c^2 + \frac{2}{2} c \cdot c^2 + \frac{2}{2} c \cdot c^2 + \frac{2}{2} c \cdot c^2 = 0$
 $\frac{1}{2} - c \cdot 2c \cdot 2c \cdot c^2 + \frac{2}{2} c \cdot c^2 + \frac{$

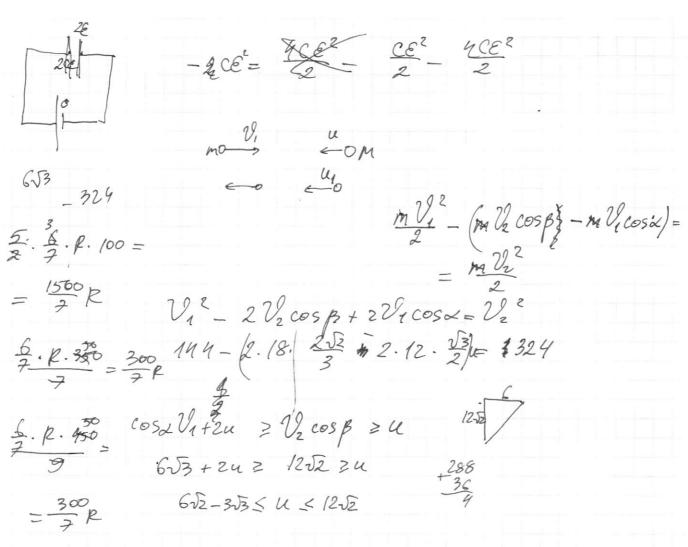

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

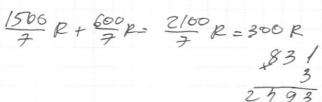
H	И	đ	ol	Э

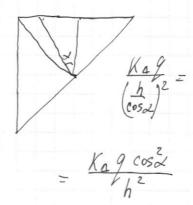
(заполняется секретарём)

Marsho buy	г, направлените от н Просункаровав напрешенность (прамен заряд	Е', µаправле (+).	muyo lepra- lan	Puyuna)
Chu za	pagnito mocnoc	16 AB, TO	offe appear re	my 0
cozgair rangs	emennocis E, p	canpabilingo	Emparo.	
<u>``</u> ,	E lo npo	neguny cynep	rozugem cyru	aprae
F	Hanpen	ermont parka	22 E.	
- J	To npo Hanpen $\sqrt{2}E$: 52		

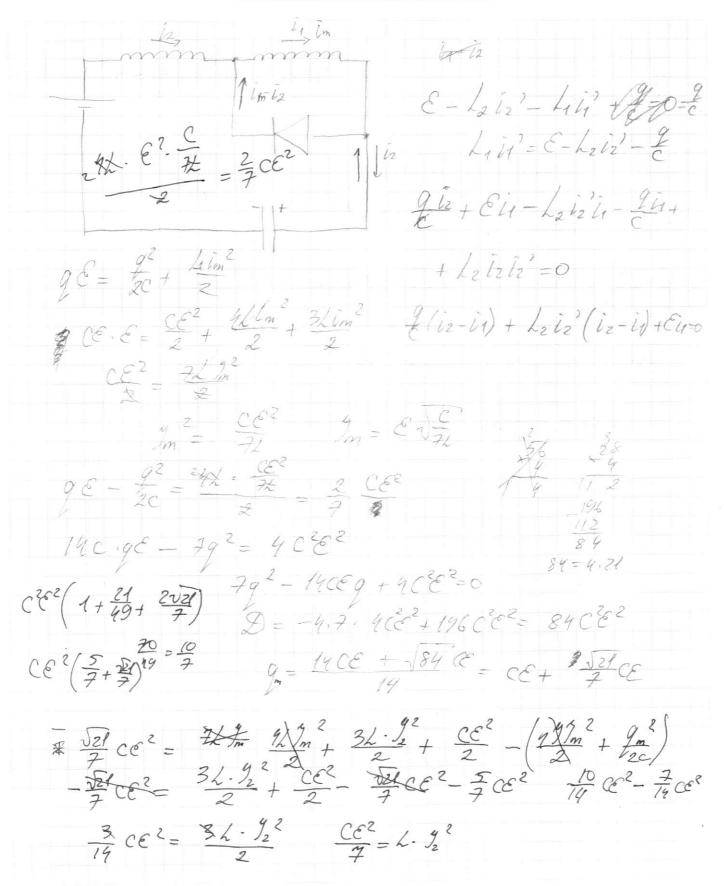





«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»


ШИФР

(заполняется секретарём)



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

(заполняется секретарём)

