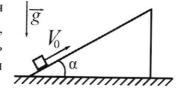
Олимпиада «Физтех» по физике 2022

Класс 10

Вариант 10-01

TT		1		
ш	И	P	p	

(заполняется секретарём)


1. Фейерверк массой m=2 кг стартует после мгновенной работы двигателя с горизонтальной поверхности, летит вертикально вверх и разрывается в высшей точке траектории на множество осколков, которые летят во всевозможных направлениях с одинаковыми по величине скоростями. Высота точки разрыва $H=65\,\mathrm{m}$. На землю осколки падают в течение $\tau=10\,\mathrm{c}$.

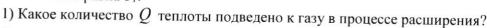
1) Найдите начальную скорость $V_{\scriptscriptstyle 0}$ фейерверка.

2) Найдите суммарную кинетическую энергию K осколков сразу после взрыва.

Ускорение свободного падения $g=10 \text{ м/c}^2$. Сопротивление воздуха считайте пренебрежимо малым.

2. На гладкой горизонтальной поверхности расположен клин. Гладкая наклонная поверхность клина образует с горизонтом угол $\alpha=30^{\circ}$. Шайбе, находящейся на наклонной поверхности клина, сообщают начальную скорость $V_0=2\,$ м/с (см. рис.), далее шайба безотрывно скользит по клину. Массы шайбы и клина одинаковы. Ускорение свободного падения $g=10\,$ м/с 2 .

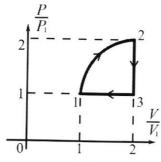
1) На какую максимальную высоту $\,H\,$ над точкой старта поднимется шайба на клине?


2) Найдите скорость V клина, в тот момент, когда шайба вернется в точку старта на клине. Массы шайбы и клина одинаковы. Ускорение свободного падения $g=10 \text{ м/c}^2$.

3. По внутренней поверхности проволочной металлической сферы радиуса R=1,2 м равномерно со скоростью $V_0=3,7$ м/с движется модель автомобиля. Движение происходит в горизонтальной плоскости большого круга. Масса модели m=0,4 кг. Модель приводится в движение двигателем. Силу сопротивления считайте пренебрежимо малой.

1) С какой по величине силой \vec{P} модель действует на сферу?

2) Рассмотрим модель автомобиля равномерно движущуюся по окружности в плоскости большого круга, составляющей с горизонтом угол $\alpha=\frac{\pi}{6}$. Вычислите минимальную допустимую скорость V_{MIN} такого равномерного движения. Коэффициент трения скольжения шин по поверхности сферы $\mu=0,9$. Ускорение свободного падения g=10 м/c².


4. Один моль одноатомного идеального газа участвует в цикле 1-2-3-1 (см. рис.), участок 1-2 —дуга окружности с центром в точке 3. Температура газа в состоянии 1 равна T_I .

2) Найдите работу A газа за цикл.

3) Найдите КПД η цикла.

Универсальная газовая постоянная R.

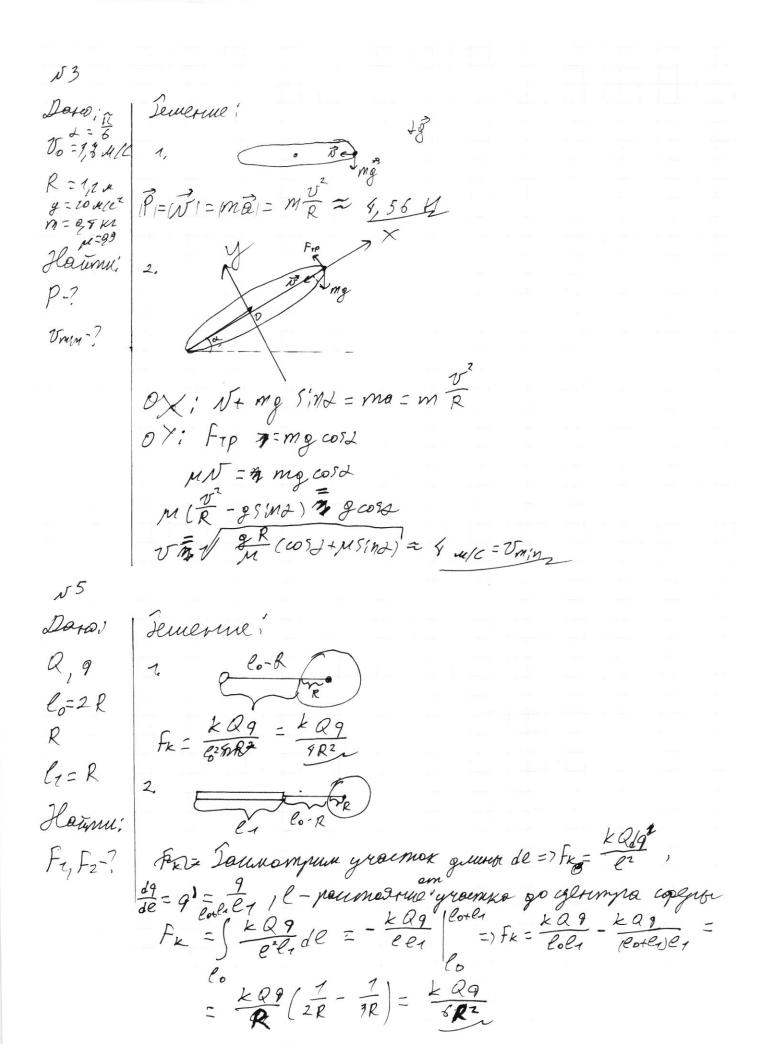
5. Заряд Q>0 однородно распределен по сфере радиуса R . В первом опыте на расстоянии 2R от центра сферы помещают небольшой по размерам шарик с зарядом q>0.

1) Найдите силу F_1 , действующую на заряженный шарик.

Во втором опыте заряд q однородно распределяют по стержню длины R, стержень помещают на прямой, проходящей через центр заряженной сферы. Ближайшая к центру сферы точка стержня находится на расстоянии 2R от центра.

2) Найдите силу F_2 , с которой заряд сферы действует на заряженный стержень.

Все силы, кроме кулоновских, считайте пренебрежимо малыми. Коэффициент пропорциональности в законе Кулона k. Явлениями поляризации пренебрегите.

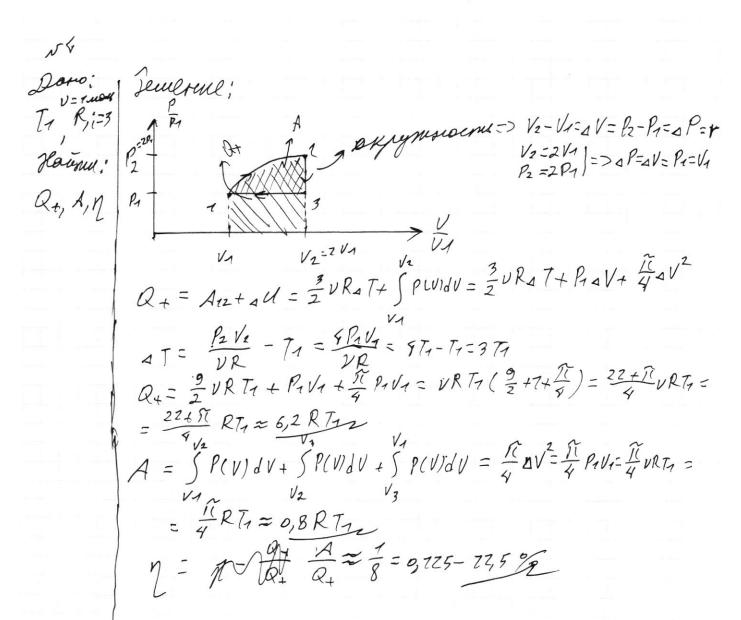

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО **ОБРАЗОВАНИЯ**

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

51	
Dario!	\vec{v}_{i}
m=zk	
H=65 M	N Va
7=100	100
y=10 u/c² Haumu;	$\begin{cases} H = V_0 + -\frac{gt^2}{2} \\ V = V_0 - gt = 0 \end{cases} \Rightarrow H = \frac{V_0^2}{2g^2} \Rightarrow V_0 = V_2gH = 70V_{13} = 36 \text{ m/c}$
Vo -?,	
K-?	$\chi = \frac{dmV_1}{2} \cdot \frac{m}{dm} = \frac{mV_1}{2} = 7 \cdot V_1 = \sqrt{\frac{3K}{m}} - \frac{ckopoint}{ckouka}$
	V1 t1 - 2 = - M - nagerne accenta, navembluero
	Вертиханно вверх
	V1 t2 + 8t2 = H - nægetul olkorka, novembulo
	Bennuxaubro Brills
	61 = 2 1 + 1 9 + 3 = 7 67 = 8 + 7 2 2 2 A
	+1>0 - 2V7 + V 9 4 4 1 V7 , 2 11
	$\frac{f_{1}>0}{f_{2}=\frac{2\sqrt{7}}{g}\pm\sqrt{\frac{9\sqrt{7}}{g}}\frac{1}{g}} = 76z = \frac{\sqrt{7}}{g}\pm\sqrt{\frac{2\pi^{2}}{g}}\frac{2\pi}{g}$
	$67 - 4z = \frac{2V_1}{9} = T =)V_1 = \frac{T_2}{2} = \sqrt{\frac{2k}{m}}$



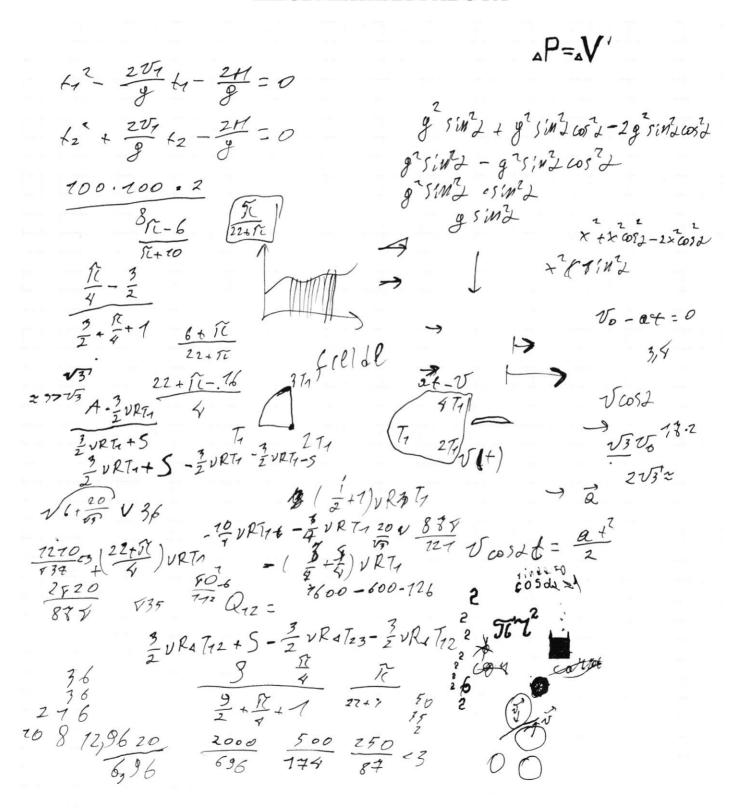
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

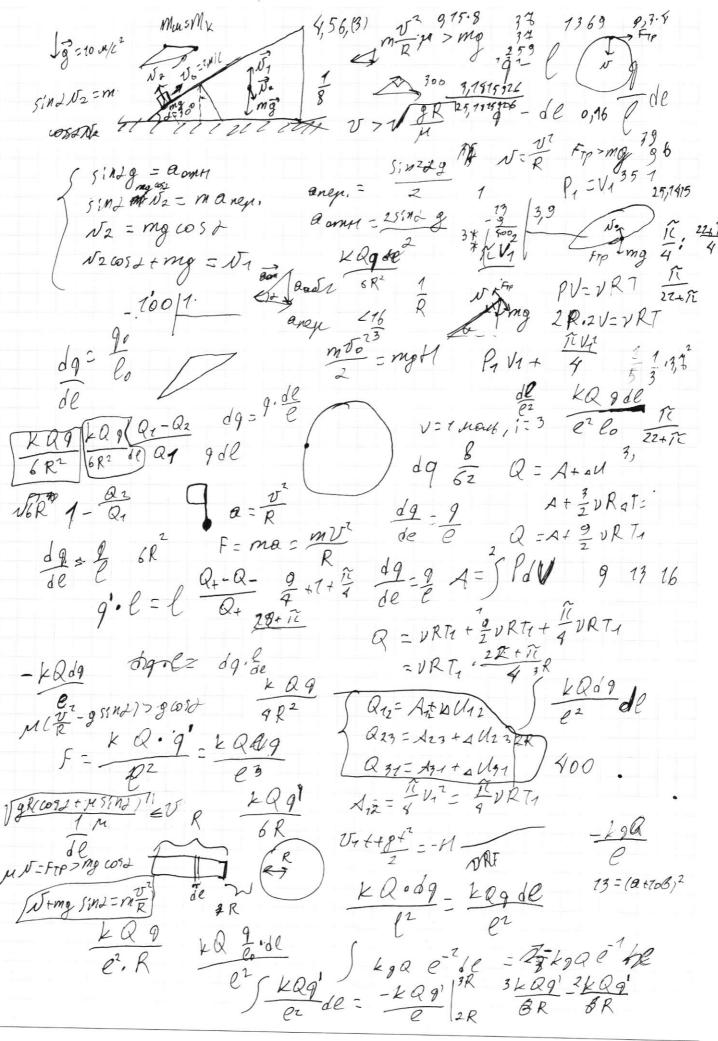
ШИФР

(заполняется секретарём)

N2 Sewence: Dario; mx=Mu=m 2=300 anguer = 95/112 = 95/112 co 92 Qase = Vammi + aren - 2 aome aren cosa = g sin 2 a exte + arex = aonur => date nanjeabelina brug 0000 Het A to anguity 1-10 mouse a killer mongym ogun u mon OCH OX OMFIDE Zewelle =) $V_0 COS2 t = \frac{a_{nex.} L^2}{2}$ $t = \frac{2V_0 CoS2}{a_{nex}} = \frac{2V_0}{2} = \frac{2V_0}$



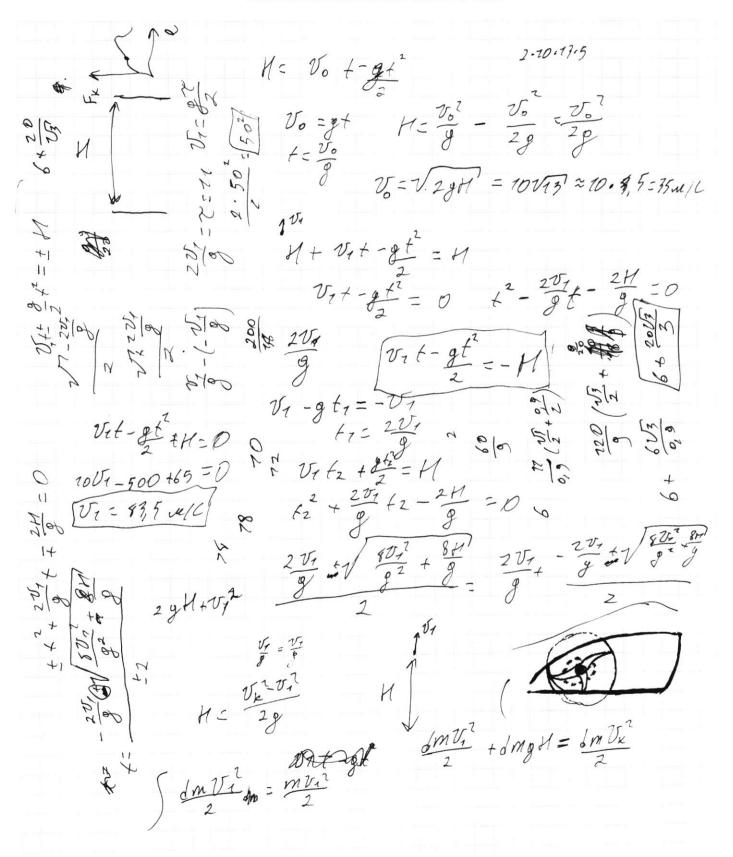
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

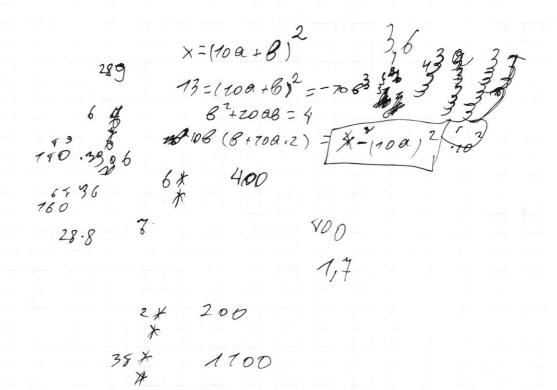

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

			•									
51												
				V че	рновин	۱)	□ чис	товик	Стр	аница	a №	_
				(По	г ставьте гал	ючку в	нужном	поле)	(Нумерова	ть толы	о чисто	вики)

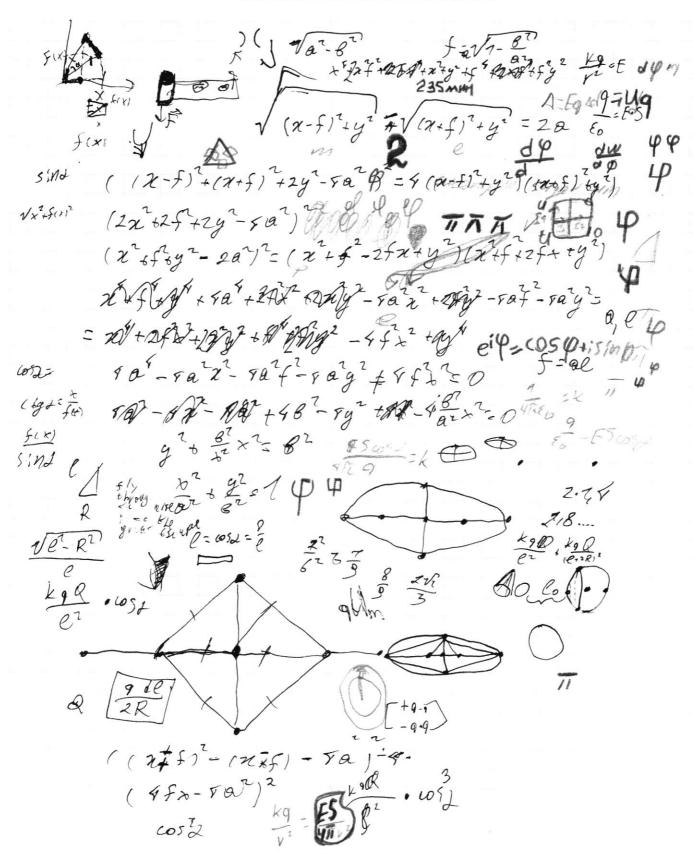



ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)



ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

