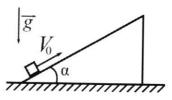
Олимпиада «Физтех» по физике 2022

Класс 10

Вариант 10-02

H	Іиф	nn
	iriq	P

(заполняется секретарём)


 λ 1. Фейерверк массой m=1кг стартует после мгновенной работы двигателя с горизонтальной поверхности, летит вертикально вверх и через $T = 3 \,\mathrm{c}$ разрывается в высшей точке траектории на множество осколков, которые летят во всевозможных направлениях с одинаковыми по величине скоростями. Суммарная кинетическая энергия осколков сразу после взрыва $K = 1800\,\mathrm{Дж}$. На землю осколки падают в течение $\tau = 10 \, \text{с}$.

1) На какой высоте H взорвался фейерверк?

2) В течение какого промежутка времени τ осколки будут падать на землю?

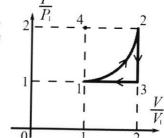
2) Корение свободного падения $g=10 \text{ м/c}^2$. Сопротивление воздуха считайте пренебрежимо малым. Ка землю

На гладкой горизонтальной поверхности расположен клин. Гладкая наклонная поверхность клина образует с горизонтом угол α такой, что $\cos \alpha = 0,6$. Шайбе, находящейся на наклонной поверхности клина, сообщают некоторую начальную скорость $V_{\scriptscriptstyle 0}$ (см. рис.), далее шайба безотрывно скользит по клину и поднимается на максимальную высоту

H=0,2 м. Масса клина в два раз больше массы шайбы. Ускорение свободного падения g=10 м/с².

1) Найдите начальную скорость V_0 шайбы.

(2) Найдите скорость V клина, в тот момент, когда шайба вернется в точку старта на клине (Maccы шайбы)и клина одинаковы. учитовать


3. По внутренней поверхности проволочной сферы равномерно движется модель автомобиля. Движение происходит в горизонтальной плоскости большого круга. Сила, с которой модель действует на сферу, в два раза больше силы тяжести, действующей на модель. Модель приводится в движение двигателем. Силу сопротивления считайте пренебрежимо малой.

Найдите ускорение а модели.

2) Вычислите минимальную допустимую скорость V_{MIN} равномерного движения модели по окружности

в плоскости большого круга, составляющей с горизонтом угол $\alpha = 45^{\circ}$. Коэффициент трения скольжения шин по поверхности сферы $\mu = 0.8$, радиус сферы R = 1 м. Ускорение свободного падения $g=10 \text{ m/c}^2$.

+4. Один моль одноатомного идеального газа участвует в цикле 1-2-3-1 (см. рис.), участок 1-2 - дуга окружности с центром в точке 4. Считать заданными давление P_1 и объём V_1 .

1) Какое количество $\it Q$ теплоты подведено к газу в процессе расширения?

2) Найдите работу A газа за цикл.

3) Найдите КПД η цикла.

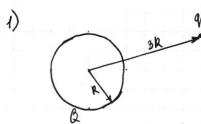
5. Заряд Q > 0 однородно распределен по сфере радиуса R . В первом опыте на расстоянии 3R от центра сферы помещают небольшой по размерам шарик с зарядом q > 0.

†1) Найдите силу $F_{\scriptscriptstyle 1}$, действующую на заряженный шарик.

Во втором опыте заряд q однородно распределяют по стержню длины R, стержень помещают на прямой, проходящей через центр заряженной сферы. Ближайшая к центру сферы точка стержня находится на расстоянии 3R от центра.

2) Найдите силу F_2 , с которой заряженный стержень действует на заряженную сферу.

кулоновских, считайте кроме пренебрежимо малыми. Коэффициент пропорциональности в законе Кулона $\,k\,$. Явлениями поляризации пренебрегите.

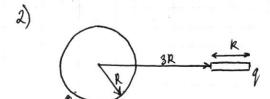

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ НИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

3agara 5

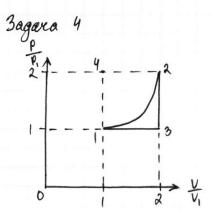

Пусть Е a - поле, которое создаёт ефера на расстоянии ЗК от уентра, тогда

Τεορεία Γαγεία:
$$\oint E dS = \frac{\sum q_i}{\varepsilon_o} = \frac{q_i \delta_{ing} r p_{in}}{\varepsilon_o}$$
, ige

$$\Rightarrow E_{\alpha} \cdot S = \frac{Q}{E_{\alpha}} \iff E_{\alpha} \cdot 4\pi (3k)^{2} = \frac{Q}{E_{\alpha}}$$

$$\Rightarrow E_{\alpha} = \frac{1}{4\pi E_{\alpha}} \cdot \frac{Q}{4R^{2}} = \frac{EQ}{9R^{2}}$$

$$\Rightarrow$$
 $F_1 = E_{\alpha} \cdot q = \frac{kQq}{gR^2}$


Пусть E(r) - ноле, которое создаёт серера на расстичкии r> R от чентра.

9 видери — заряд, находящийся видери едре-рической оболочки радиуса г и теощадью s

$$\Rightarrow E(r) \cdot S = \frac{Q}{\varepsilon_0} \iff E(r) = 4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$= \sum_{q} E(r) dq = \int_{R} \frac{kQ}{r^2} dq = kQq \int_{R} \frac{1}{r^2} = kQq \left(\frac{1}{9R^2} - \frac{1}{16R^2}\right) = \frac{7kQq}{144R^2}$$

Orber: 1)
$$F_1 = \frac{kQq}{9k^2}$$
 2) $F_2 = \frac{7kQ}{144R^2}$

$$\pi - ruan , \Pi u'' \approx 3,14$$

$$\frac{P_i}{V_i} = const$$

1) 1 Начало термодинамики

Q12 — теплота, выделившалел при расширении и равнол количеству подведённой тешести Q

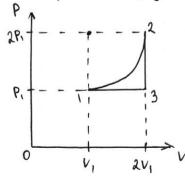
 A_{12} - ραδοτα ιαζα нα участке расширения газа $1\rightarrow 2$, равная пиощада под урадрином $P(V)_{1\rightarrow 2} = \frac{P}{P_1}(\frac{V}{V_1}) \cdot \frac{P_1}{V_1}$

U12 - щиенение внутренный энергии в процессе расширения

$$\Rightarrow Q = Q_{12} = \underbrace{\left((2-1)\cdot 2 - \frac{1}{4}\pi \cdot 1^{2}\right) \cdot \frac{2}{5}p_{1}}_{A_{12}} + \left(2\cdot 2 - 1\cdot 1\right) \cdot \frac{P_{1}V_{1}}{6} = \frac{20-\pi}{4} P_{1}V_{1}$$

2) $A = A_{12} - A_{13}$, $rge A_{12} > 0$, $A_{13} > 0$ u $A_{23} = 0$, r.k. nuovyago nog rpagnukom b npowecce 2+3 pabra 0.

$$\Rightarrow A = A_{12} - A_{13} = (2 - 1) \cdot 2 - \frac{1}{4}\pi \cdot 1^{2} = P_{1}V_{1} - (2 - 1) \cdot 1 \cdot \frac{P_{1}V_{1}}{4} = \frac{4 - \pi}{4} + \frac{P_{1}V_{1}}{4} = \frac{P_{1}V_$$


3)
$$\eta = \frac{A}{Q} = \frac{4-\eta}{\frac{20-\eta}{4}} = \frac{4-\eta}{20-\eta}$$

1)
$$Q = \frac{20-\pi}{4} P_1 V_1 \simeq 4,215 P_1 V_1$$

2)
$$A = \frac{4-\pi}{4} P_1 V_1 \approx 0,215 P_1 V_1$$

3)
$$\eta = \frac{4-\pi}{20-\pi} \simeq \frac{43}{843}$$

Коментарий к задаче 4. Пионадь инется по градину ниме.

" филура" на графике не менлет дрормы и изменлетел только в размерах, $\tau.k.$ ми умномаем $\frac{P}{P_i}\left(\frac{V}{V_i}\right)$ на константу $\frac{P_i}{V_i}$.

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

Bagara 1

1) K= mgH + A, rge mgH - novenywaronas arepus

=> K=mgH => H= k = 180m (F.K. One uneckerence)

1) Занон сохр. энериц (3СЭ): $mgH = \frac{m(gT)^2}{2} + A$, rge mgH - но тенунальная энериця $\frac{m(gT)^2}{2} - кинетическая энериця$ A - инновенная работа двинателя (=0)

 \implies mgH = $\frac{m(gT)^2}{2}$ => H = $\frac{gT^2}{2}$ = 45 u

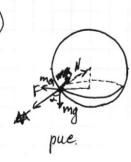
2) Вопрое задачи: Через какое время поеле вгрыва первый осколок упадёт на замыю?

 $K = \sum \frac{\Delta m z e^2}{2}$, $zge \Delta m - macca ognoro oenonka <math>e - enopoero oenonka$

=> $K = \frac{mv^2}{2} => v = \sqrt{\frac{2K}{m}} = 60u/e$

Биетрее всего на землю упадет на окнолок, летящий вертинально вниз поасе взрива, а медлениее - летящий вертинально вверх:

7. k.: Die верт. нетещею основка: $-H = vt_1 - \frac{gt_1^2}{2}$ Die верт. нетещею вних основка: $-H = -vt_2 - \frac{gt_2^2}{2}$


DAR grynx Ockorkob: At At The -H= (V sind) t - gt2

 $-H = -(v \sin \beta) t' - g t'$

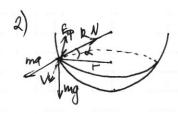
t, - время надения вертикально вверх метамено основка t2 - время падения вертичанню вних летящего осколка t, t' - вреше надения других основнов $t_{1} = -V \pm \sqrt{V^{2} + 2gH'} = -V + \sqrt{V^{2} + 2gH'}$ L = + Vsinx = ((vsinx)2+29H' = + vsinx + J(vsin)2+29H' 1 = - Vsing + J(vsing)2+29H' = - Vsing + J(vsing)2+29H решений Уравнений nogroguyee pewerwe (>0)

t,>t>t2 u t,>t1>t2 Fk. Desind < 1 4 Desing < 1 $\frac{-60+\sqrt{60^2+2\cdot10\cdot45}}{10}c=(-6+3\sqrt{5})e=0,7e$ Orber: 1) H=45m 2) t2=0,7e

Bagara 3

Pachunen eune, generoyongue na negens тд - сила Темпети (т-масед модели) - уекорение модели (направлено от точни 0 - чентра круга) N=F - сила реануни опоры, равная силе, е которой модель дествует на еферу (мемат на минион, еодершануей чентр сареры 0 и координату модели) F_{TP} - сила трения 1 (ma), N, (mg) 7.k. F=2mg => cos x= \frac{1}{2} => x=60° +.k. no 23akony

ma= 2mg sind = 2mg. 13 => a = \(\sqrt{3} \cdot g = 17 \(\mu/e^2 \)



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

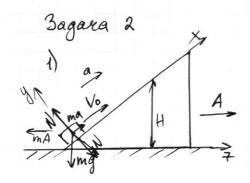
Расилием силы, денетвующие на модель

N- сила реакупи опорт Етр — егия Трения скольжения иму — сила Тямеет модели а — уенорение модели

V u Ep memas na aguan upemon

=> 2 Bancon Honorona: Img = Nsind + masind ma cost = Neost

 $\Rightarrow mg = 2 ma sind \Rightarrow a = \frac{3}{2 sind} = \frac{3}{12}$


 $F_{Tp} = \mu mg$ $r = \frac{R}{\sqrt{2}} \cdot R \cdot eos_{\chi} = \frac{R}{\sqrt{2}} - paguye kpyra$ $a = w^{2} r$, rge w - ywoboe yenopekue

=> $\omega^2 = \frac{q}{r} = \frac{2\pi}{r} = \left(\frac{2\pi}{T}\right)^2$, rge T - nepuog

TO 363 MO2

 $\Rightarrow T = \frac{2\pi}{u^2} = \frac{2\pi\sqrt{u}}{\sqrt{q'}}$

3CU: mv > FpT

т — масса шайбы А- уекорение имика ту — уекорение свободного падения сила тяшееа- ускорение шайбы ти шайбы N- реакция опоры шайбы (в СО кина)

23H: 2: 2m A = Nsinx

y: N= mgcosa x:ma = mgsinx

 $A = \frac{N \sin \alpha}{2m} = \frac{mg \cos \lambda \sin \lambda}{2m} = \frac{10.06.0,8}{2} \text{ where }$ $a = g \sin \alpha = 8 \text{ where }$ $\Rightarrow \int H \cos \alpha = V_0 t + \frac{4}{2} \frac{dt^2}{2}$

2 3H: 2: $f_{2m}A = N \sin \alpha$ y: $f_{2m}A = N \sin \alpha = mg \cos \alpha$ X: $f_{2m}A = mg \sin \alpha + mA \cos \alpha$

=> # 2mA + mAsina = mgcosx

$$\Rightarrow A = g \frac{\cos \alpha}{\frac{1}{\sin \alpha} + \sin \alpha} = \frac{0.6 \cdot 0.2}{\sin^2 \alpha + 1} g = \frac{0.48}{1.649} = \frac{12}{41} g$$

$$\Rightarrow a = g \sin x + A \cos x = 0,8g + \frac{12}{41} \cdot \frac{3}{5}g = \frac{200}{205}g = \frac{40}{41}g$$

=> Heason = Vot + at2

307: mgH = mus2 - mg sind. He sind + ma Hsind

=>
$$V_0 = \sqrt{2gH + 2g\sin^2 x \cdot H - \frac{40}{41}g \cdot H \sin x} =$$

= $\sqrt{4 + \frac{64}{25} - \frac{46.47}{41}}$

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

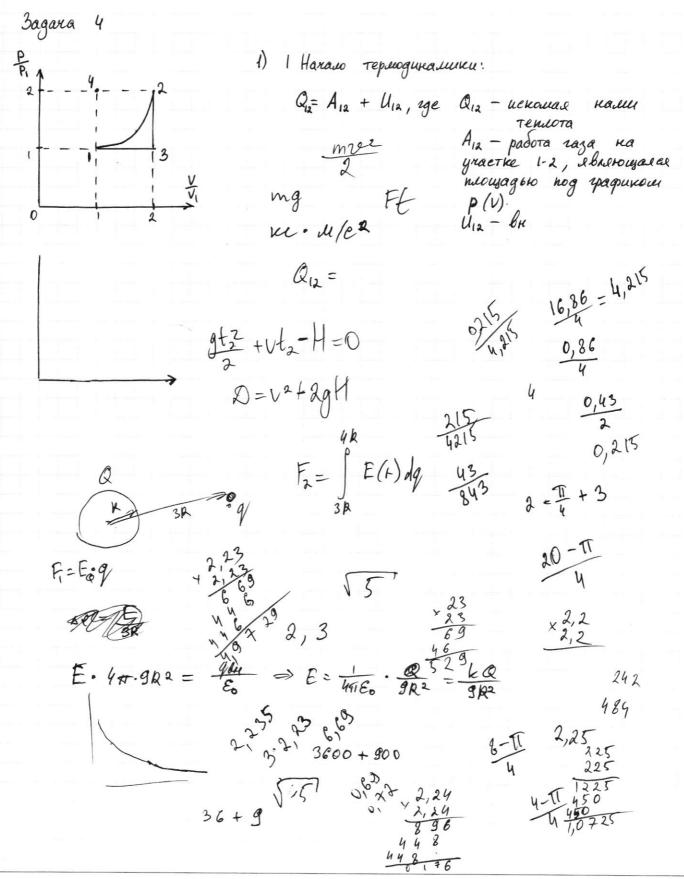
ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

smgH NI-	99			
9 m Vog 2 m				
H -	wgAz=	eost masino	ys +	mas
$\frac{1}{(3R)^2} = \frac{1}{(4R)^2} = N$	sind.	Vosind -	*	
16-9=7	mg. e08d sil	nx=24na=>a=	tg sin 2d	
Salo ma	ŧ	1,7 7,9 17 2,89	8	48 =
7k00	mag	324 324 175 875 25 Vo	17	20 45
ひしま	12	25	- 1	4-41=184
ma = FrpT	306	25 Vo	SINA LE	36
=> 90 = Fip T = um	9.1		2.0	16.4

		чер	НОН	зик	[⊒ ч	исто	OBI	ИК		(Стп	ан	ипа	No.			
□ черновик □ чистовик (Поставьте галочку в нужном поле)								Страница № (Нумеровать только чистовики)										



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

