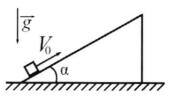
Олимпиада «Физтех» по физике 2022

Класс 10

Вариант 10-02

Шифр


(заполняется секретарём)

1. Фейерверк массой m=1кг стартует после мгновенной работы двигателя с горизонтальной поверхности, летит вертикально вверх и через T=3 с разрывается в высшей точке траектории на множество осколков, которые летят во всевозможных направлениях с одинаковыми по величине скоростями. Суммарная кинетическая энергия осколков сразу после взрыва $K=1800\,\mathrm{Дж}$. На землю осколки падают в течение $\tau=10\,\mathrm{c}$.

1) На какой высоте H взорвался фейерверк? $T_{\text{срез}}$ какое вр. мосле взрыва перв. 2) В течение какого промежутка времени τ осколки будут падать на землю? оск. уладет на з

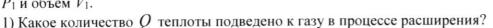
Ускорение свободного падения $g=10 \text{ м/c}^2$. Сопротивление воздуха считайте пренебрежимо малым.

2. На гладкой горизонтальной поверхности расположен клин. Гладкая наклонная поверхность клина образует с горизонтом угол α такой, что $\cos \alpha = 0,6$. Шайбе, находящейся на наклонной поверхности клина, сообщают некоторую начальную скорость V_0 (см. рис.), далее шайба безотрывно скользит по клину и поднимается на максимальную высоту

H = 0,2 м. Масса клина в два раз больше массы шайбы. Ускорение свободного падения $g=10 \text{ м/c}^2$.

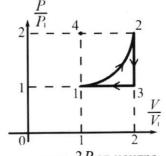
1) Найдите начальную скорость V_0 шайбы. $\mathcal{M} = \frac{1}{2}\mathcal{M}$

2) Найдите скорость V клина, в тот момент, когда шайба вернется в точку старта на клине. Массы шайбы и клина одинаковы. $\mathcal{M} = \mathcal{M}$


3. По внутренней поверхности проволочной сферы равномерно движется модель автомобиля. Движение происходит в горизонтальной плоскости большого круга. Сила, с которой модель действует на сферу, в два раза больше силы тяжести, действующей на модель. Модель приводится в движение двигателем. Силу сопротивления считайте пренебрежимо малой.

1) Найдите ускорение а модели.

2) Вычислите минимальную допустимую скорость V_{MIN} равномерного движения модели по окружности


в плоскости большого круга, составляющей с горизонтом угол $\alpha = 45^{\circ}$. Коэффициент трения скольжения шин по поверхности сферы $\mu = 0.8$, радиус сферы R = 1 м. Ускорение свободного падения g = 10 м/с².

4. Один моль одноатомного идеального газа участвует в цикле 1-2-3-1 (см. рис.), участок 1-2 – дуга окружности с центром в точке 4. Считать заданными давление P_1 и объём V_1 .

2) Найдите работу A газа за цикл.

3) Найдите КПД η цикла.

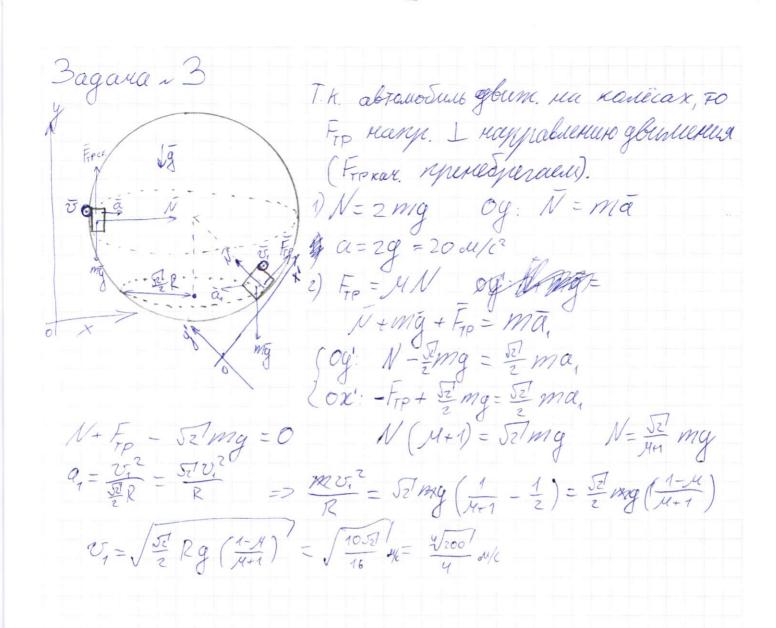
5. Заряд Q>0 однородно распределен по сфере радиуса R . В первом опыте на расстоянии 3R от центра сферы помещают небольшой по размерам шарик с зарядом q>0.

1) Найдите силу F_1 , действующую на заряженный шарик.

Во втором опыте заряд q однородно распределяют по стержню длины R, стержень помещают на прямой, проходящей через центр заряженной сферы. Ближайшая к центру сферы точка стержня находится на расстоянии 3R от центра.

2) Найдите силу F_2 , с которой заряженный стержень действует на заряженную сферу.

Все силы, кроме кулоновских, считайте пренебрежимо малыми. Коэффициент пропорциональности в законе Кулона k . Явлениями поляризации пренебрегите.


ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

30g1	ara v		=0 =>		9 T2 2 = 45		
1	lg l		Κ.	$=\sum E_{ki}$	$=\sum M_{\tilde{i}} \cdot 2$	$\frac{r^2}{2} = \frac{v^2}{2}$	$\sum M_i = \frac{v^2}{2}M$
5.1		/ 1			cherob		ва, 70 кеньши (не -7 капр.
вниз	.), a -42	nocieg	grage	Ty-Mi	(0) C C (=>)	g-nun searp, bi	bejuz.)
C, =	1294+v2	7-5 =	2 3057-8	0 = = 1	3(551-12) C	2 0,75 C	bepr.) -v±/v2+4947

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

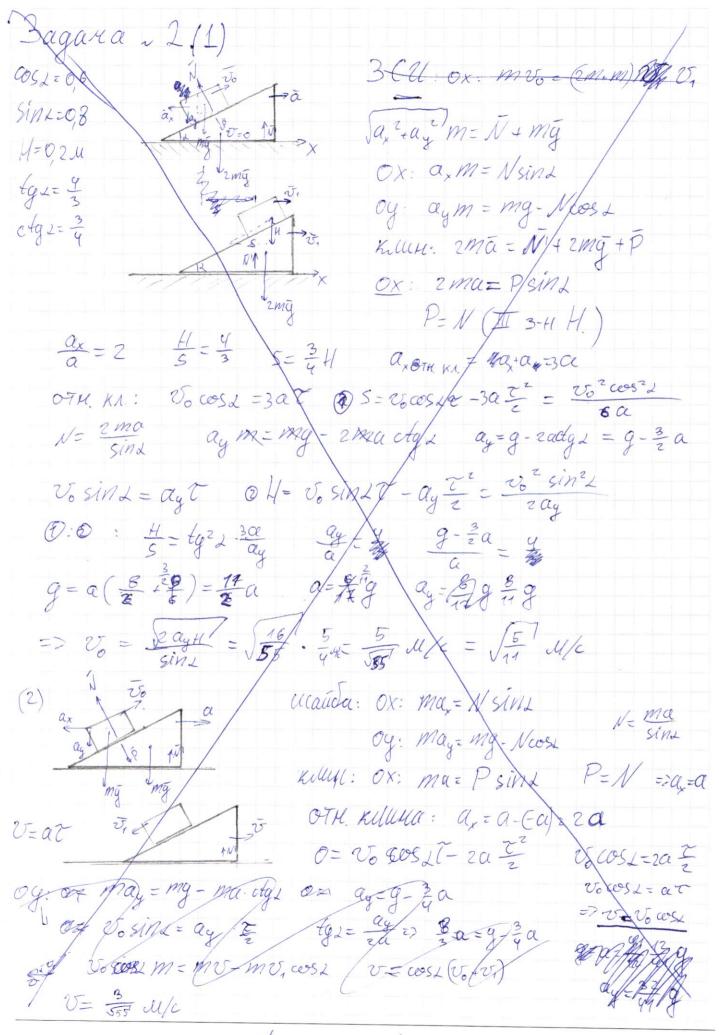
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

IIICDMEIIIIAAI I ADOTA
3agara 2
1 - 3 - 3 M V, 2 + MgH - & 3C 3
1 1 1 1 2 COSZ = 31X. U1 - 3CU
$v_0^2 = 2gH + \frac{v_0^2 \cos^2 L}{3}$
$v_0^2 \left(1 - \frac{3}{25}\right) = 2gH$ $v_0 = \sqrt{\frac{4 \cdot 25}{22}} = 10 \cdot \frac{1}{\sqrt{12}} M/c$
$\frac{10}{2} = \frac{100}{2} + 100$
$\lim_{n \to \infty} m v_0 \cos z = m v' v' = 6 \int_{n}^{\infty} u/c$
$\frac{1}{29}\left(v_0^2 - 2\cos^2v_0^2\right) = \frac{100(1-2.036)}{22.2.10} = \frac{2.8}{44} = \frac{0.7}{11} \text{ at }$
$\frac{\overline{U_1}}{2} = \frac{m \overline{U_0}^2}{2} = \frac{m \overline{U_0}^2}{2} + \frac{m \overline{U_0}^2}{2} = \frac{\overline{U_0}^2 - \overline{U_0}^2}{2}$
MY COS 2 = UM
vol = b37 vocos2 = v - vocos2
$U_1 = \frac{U}{\cos 2} - U_0$
20 = v + v + 262 - 2 0 = v cos2 + v - 2 cos2vo
$V = \frac{2\cos 2}{\cos^2 2} = \frac{12}{1,36} = \frac{10}{\sqrt{22}} = \frac{300}{34\sqrt{22}} = \frac{150}{14\sqrt{22}} = \frac{1}{14\sqrt{22}} = \frac{1}{1$

					чер	ЭНС	ви	κ	Г] t	ис	ГОВ	ик			C	202	•••	. 1				
					Пос				уві	нужн	ном і	іоле)		Страница №									

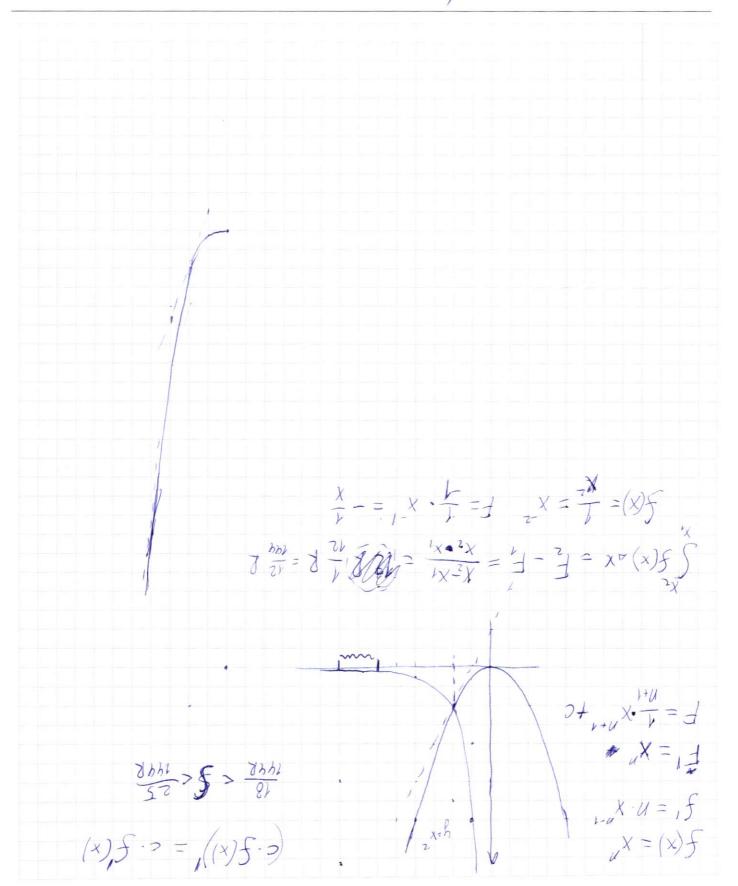

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

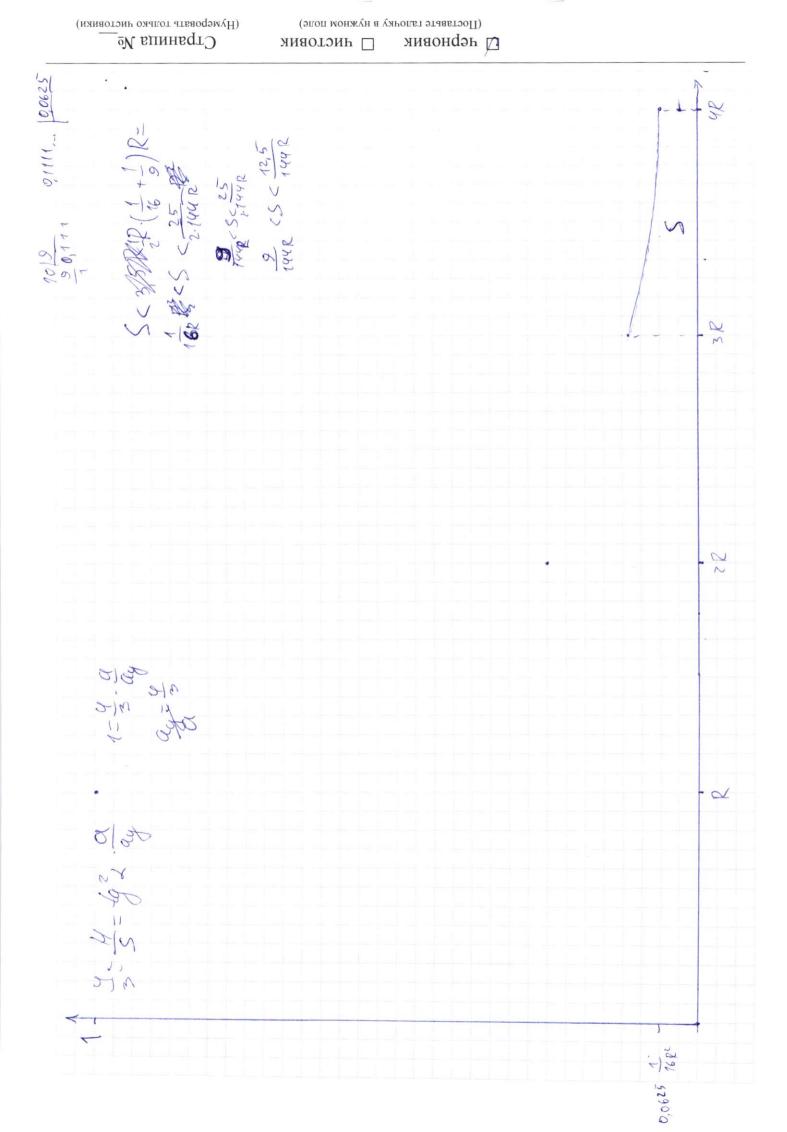
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

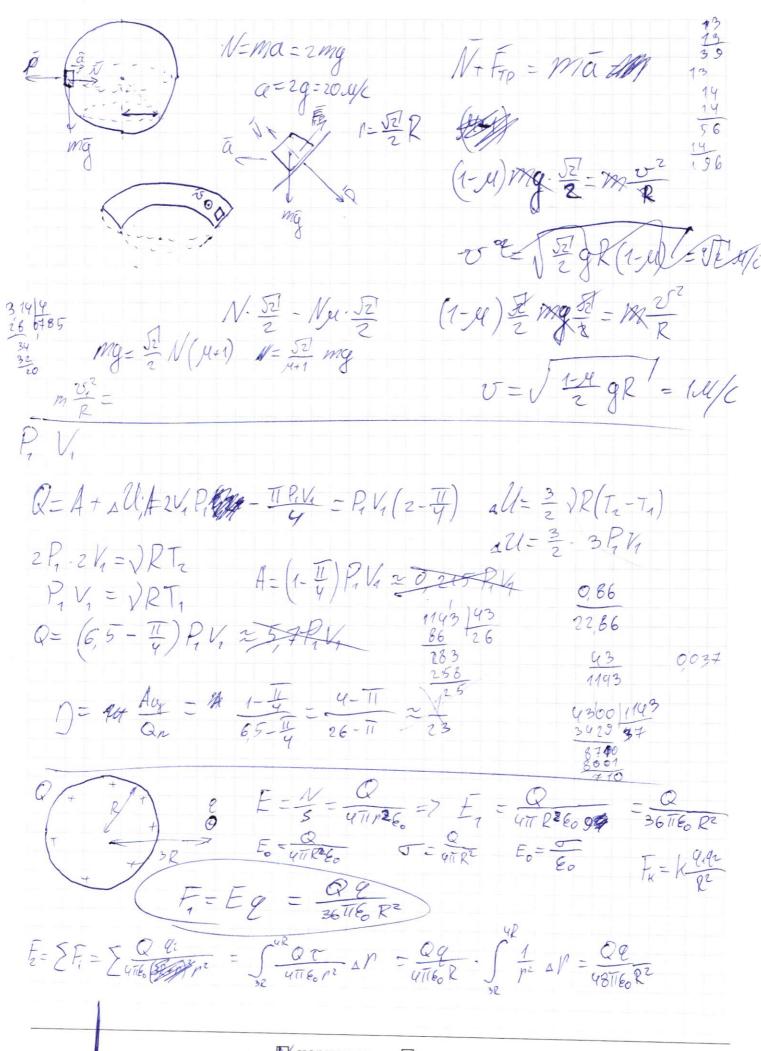
3agara 14 Pacumpenue: $1=2$ $i=3$ $Q = A + all$ $A = 2P_1V_1 - \frac{\pi P_1V_1}{4}$ $A = 2P_1V_1 - \frac{\pi P_1V_1}{4}$ $A = 2P_1V_1 - P_1V_2$
2) $A_{\frac{1}{y}} P_{1} V_{1} - \frac{\pi P_{1} V_{1}}{y} = P_{1} V_{1} \left(1 - \frac{\pi}{y}\right)$ 31: UL ; $A < O \Rightarrow Qorbog$. 3) $\int \frac{A_{\frac{1}{y}}}{Q} = \frac{1 - \frac{\pi}{y}}{Q} = \frac{1 - \frac{\pi}{y}}{26 - \pi} = \frac{1}{23}$
E 3 aga $\frac{1}{2}$ 2 R $\frac{1}{2}$ $$
$F_{2} = \sum_{i} F_{i} = \sum_{i} $
TE TO THE OF THE TENT OF THE T


ШИФЬ


ОРБУЗОВУЛЕ ПРНОЕ ЛАБЕЖТЕНИЕ ВРІСПІЕLО ФЕТЕБА ТОСАТУЬСТВЕННОЕ УВІСПІЕLО

АНИВЕЬСИЛЕЛ)» «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

(мэфатэфиээ котэкипопая)


ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

$V_0 = gT = 30 \text{ M/c}$ $H = V_0 I - \frac{gI}{2} = \frac{gI}{2} = 45 \text{ M}$	10; H= 57, + g2,2
$E = \sum E_{\kappa} = \sum m_{i} \mathcal{I}^{2} = \mathcal{O}^{2} \sum m_{i} = \mathcal{O}^{2} M$	$\mathcal{T}_{4} = -\mathcal{V} \pm \sqrt{\mathcal{V}^{2} + 2gH}$
$\Rightarrow \mathcal{V} = \sqrt{\frac{2E}{m}} = 60 \text{cu/c}$	$C_{1} = \frac{30\sqrt{5}^{2} - 30 \cdot 2}{10} = 3(\sqrt{5}^{2} - 2) c$
	484 H= -272+ 8 22 484 23 2 25+ /252+ 2947
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{25}{25} = \frac{2}{10} - \frac{205490}{205490}$ $\frac{1125}{450} = \frac{1}{2} - \frac{7}{1} = 120$
$\sqrt{2000}$ $\cos 2 = 0.6$	Fox = 25 cos 2 ///
$5002 = 0.8$ $492 = \frac{4}{3}$	$\mathcal{D}_{1x} = 3M7 \mathcal{Z}_1 \qquad \mathcal{Z}_1 = \frac{260052}{3}$
mā zmy	$V_{oy} = V_o SINL = g $ $H = V_{oy} = V_{oy}^2 = V_o^2 SINL^2$
$E_{z} = m \frac{5}{2} \qquad E_{z} = mgH + \frac{3m 5^{2}}{2}$	
$v_0^2 = 29H + 3 \frac{v_0^2 \cos^2 L}{3^2}$	$U_0 = \frac{\sqrt{2gH}}{\sin 2\pi} = 2.5 \frac{\pi}{4} \text{ and } c$
$v_0^2 \left(1 - \frac{\cos^2 2}{3}\right) = 29H$	$v_1 = 0.5 \text{m/c}$
$U_0^2 = \frac{q}{0.88} M_1^2 (2)^2 = \frac{1}{0.22} = \frac{100}{22} = \frac{50}{11}$	

