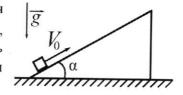
Олимпиада «Физтех» по физике 2022

Класс 10

Вариант 10-01

Шифр	

(заполняется секретарём)


1. Фейерверк массой m=2 кг стартует после мгновенной работы двигателя с горизонтальной поверхности, летит вертикально вверх и разрывается в высшей точке траектории на множество осколков, которые летят во всевозможных направлениях с одинаковыми по величине скоростями. Высота точки разрыва H=65 м. На землю осколки падают в течение $\tau=10$ с.

1) Найдите начальную скорость $V_{\scriptscriptstyle 0}$ фейерверка.

2) Найдите суммарную кинетическую энергию K осколков сразу после взрыва.

Ускорение свободного падения $g=10 \text{ м/c}^2$. Сопротивление воздуха считайте пренебрежимо малым.

2. На гладкой горизонтальной поверхности расположен клин. Гладкая наклонная поверхность клина образует с горизонтом угол $\alpha=30^{\circ}$. Шайбе, находящейся на наклонной поверхности клина, сообщают начальную скорость $V_0=2\,$ м/с (см. рис.), далее шайба безотрывно скользит по клину. Массы шайбы и клина одинаковы. Ускорение свободного падения $g=10\,$ м/с 2 .

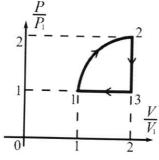
1) На какую максимальную высоту $\,H\,$ над точкой старта поднимется шайба на клине?

2) Найдите скорость V клина, в тот момент, когда шайба вернется в точку старта на клине. Массы шайбы и клина одинаковы. Ускорение свободного падения $g=10 \text{ m/c}^2$.

3. По внутренней поверхности проволочной металлической сферы радиуса R=1,2 м равномерно со скоростью $V_0=3,7$ м/с движется модель автомобиля. Движение происходит в горизонтальной плоскости большого круга. Масса модели m=0,4 кг. Модель приводится в движение двигателем. Силу сопротивления считайте пренебрежимо малой.

1) С какой по величине силой P модель действует на сферу?

2) Рассмотрим модель автомобиля равномерно движущуюся по окружности в плоскости большого круга, составляющей с горизонтом угол $\alpha = \frac{\pi}{6}$. Вычислите минимальную допустимую скорость V_{MIN} такого равномерного движения. Коэффициент трения скольжения шин по поверхности сферы $\mu = 0,9$. Ускорение свободного падения g=10 м/с².


4. Один моль одноатомного идеального газа участвует в цикле 1-2-3-1 (см. рис.), участок 1-2 —дуга окружности с центром в точке 3. Температура газа в состоянии 1 равна T_I .

2) Найдите работу A газа за цикл.

3) Найдите КПД η цикла.

Универсальная газовая постоянная R.

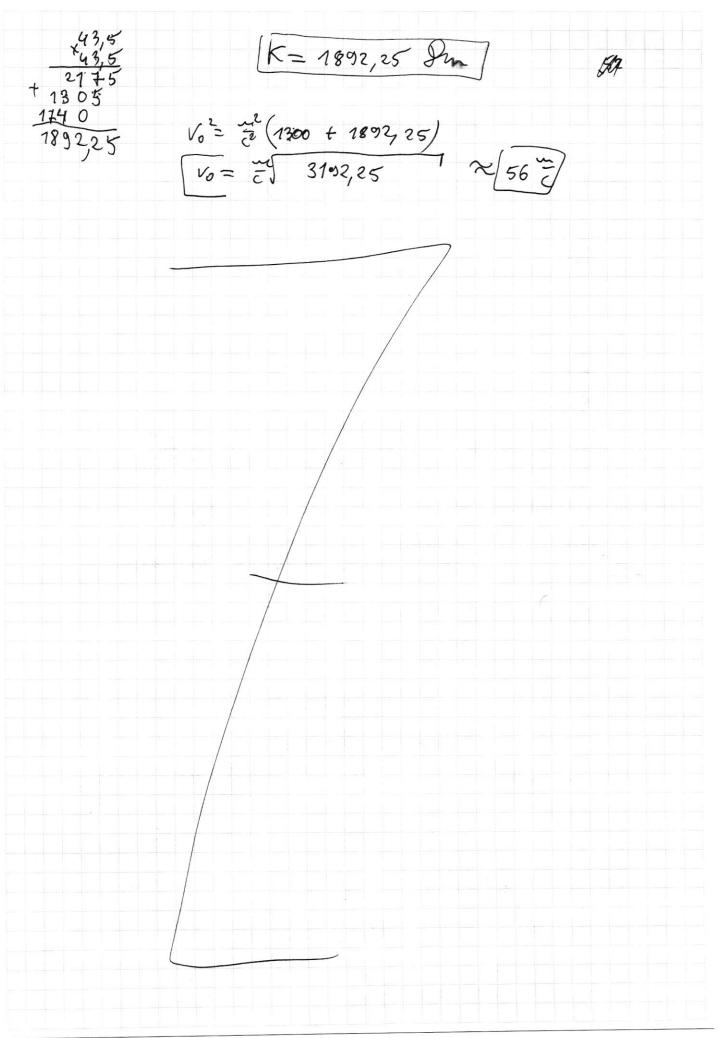
5. Заряд Q > 0 однородно распределен по сфере радиуса R . В первом опыте на расстоянии 2R от центра сферы помещают небольшой по размерам шарик с зарядом q > 0.

1) Найдите силу F_1 , действующую на заряженный шарик.

Во втором опыте заряд q однородно распределяют по стержню длины R, стержень помещают на прямой, проходящей через центр заряженной сферы. Ближайшая к центру сферы точка стержня находится на расстоянии 2R от центра.

2) Найдите силу F_2 , с которой заряд сферы действует на заряженный стержень.

Все силы, кроме кулоновских, считайте пренебрежимо малыми. Коэффициент пропорциональности в законе Кулона k . Явлениями поляризации пренебрегите.

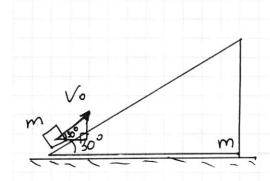


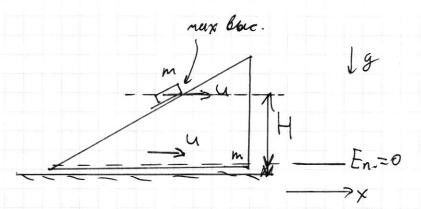
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

1. m=2 Re H=65m, T=10c Vo-?. K-?
$ g = 10 \frac{2}{c^2}$
1 Vo
Bozemin eckenek, pozpul rog gurand c repuz: NoU; (MU; 24) Benne T; hag. Imoro ockenka versmans:
T; hag. Imoro ochevra yearmons: $X = H + U : \sin \lambda \cdot \xi - \frac{g \mathcal{E}^2}{2}$ $X = 0 \text{ yn } t = 0$;
Ti Max you & max => sind = 7
Ti Max you de Max => sind = 7 $H + 4C = \frac{92^2}{2} 4 = \frac{92^2 - H}{2} = \frac{10\pi}{2} \cdot \frac{10x}{2} = \frac{65m}{10C}$
$K = \frac{50 \text{cm}}{2} - 6,5 \text{c} = 43,5 \text{c}$ $K = \frac{50 \text{cm}}{2} = \frac{43,5 \text{c}}{2} = \frac{43,5 \text{c}}{2} = 43,5 \text{c}$ $= \frac{130}{2} = \frac{130}{$
$\frac{r_{0}v_{0}^{2}-m_{0}g_{1}+m_{0}u^{2}}{2} v_{0}^{2}=2g_{1}+u^{2}=2.70 \frac{m}{c^{2}}.65m_{1}+(43,5)^{2} \frac{m^{2}}{c^{2}}$ $v_{0}^{2}=1300 \frac{m^{2}}{c^{2}}+43,5^{2} \frac{m^{2}}{c^{2}}$


МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ


ШИФР

(заполняется секретарём)

ПИСЬМЕННАЯ РАБОТА

2. 2=30°, Vo=2 = , 9270 =2

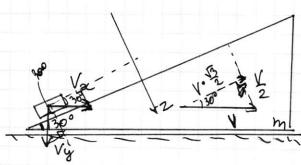
1)3(Uz: mVo cos 300 = 2. my Vo. 53 = 24 4= Vo. 43

Vo= 44

3(): mvo2 = 2. mu2 + mgH

Vor= 16/242 42 = 3/62

16u2 = 42+gH


\$34= 48+gh gH= \$42

9H= 5. 8 Vo2

 $H = \frac{5 V_0^2}{169} = \frac{5 \cdot 4 \frac{m^2}{c^2}}{169} = \frac{5}{40} \frac{1}{10}$

M= 3m

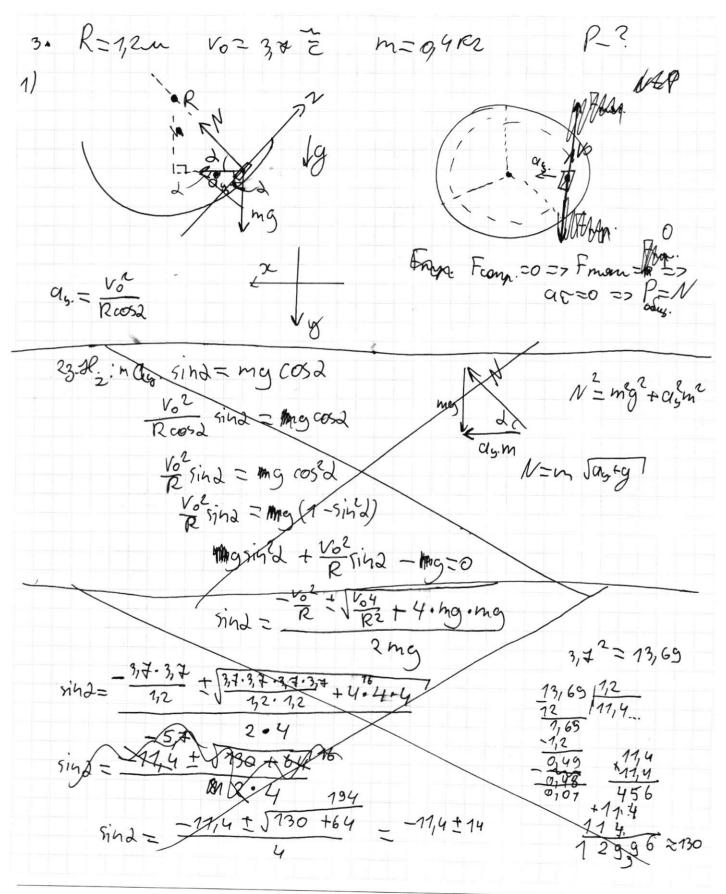
2)

3CU a: MV0 cos 300 = mV + mVa.

Fun. cb.(z): = Vx. 1 + yVy. 13

3(7: mv2 = mv2 + m (1/2 + 4)

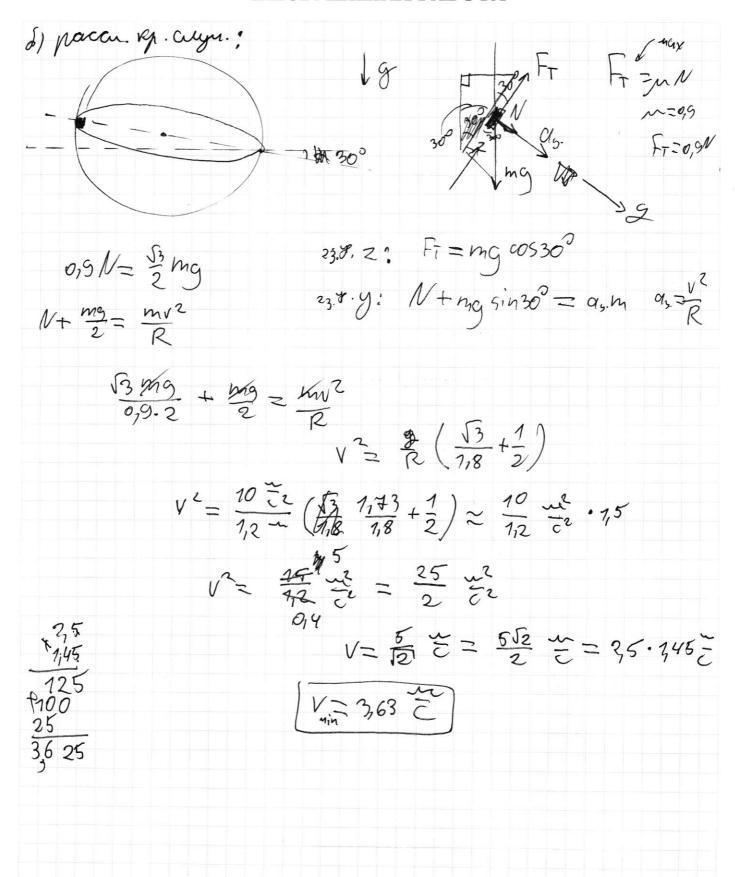
Vo. 2= V+Vx V=Vx +J3 Vy $V_{x} = \frac{V - V_{x}}{\sqrt{3}}$ Vo2= V2+ Vx + Vy2 Vx = \frac{13}{2} Vo-V $V_0^2 = V^2 + \left(\frac{\sqrt{3}}{2}V_0 - V\right)^2 + \left(\frac{2V}{\sqrt{3}} - \frac{\sqrt{6}}{2}\right)^2$ $V_y = \frac{1}{\sqrt{3}} \left(V - \frac{\sqrt{3}}{2} V_0 + V \right)$ Vy = 2V - 18 16. 1 $V_0^2 = V^2 + \frac{3}{4}V_0^2 + V^2 - \sqrt{3}VV_0 + \frac{4V^2}{3} + \frac{V_0^2}{4} - 2\frac{VV_0}{\sqrt{3}}$ you = morga 4= 92 + 3 .4 + 92 - 53.49 + 492 + 4 - 2.4.4. (4)2y2 (3)4 - 4 13y + 4y2 (1)-0=242-4534 + 442 - 1-4 0= 29 - 453 + 34 - 8 453 + 8 = \$3 10 y $y = \frac{2\sqrt{3.3}}{5} + \frac{4.3}{5\sqrt{3}} = \frac{6\sqrt{3}}{5} + \frac{4.\sqrt{3}}{5}$ $9 = \frac{13}{5}(6+4) = 2\sqrt{3}$

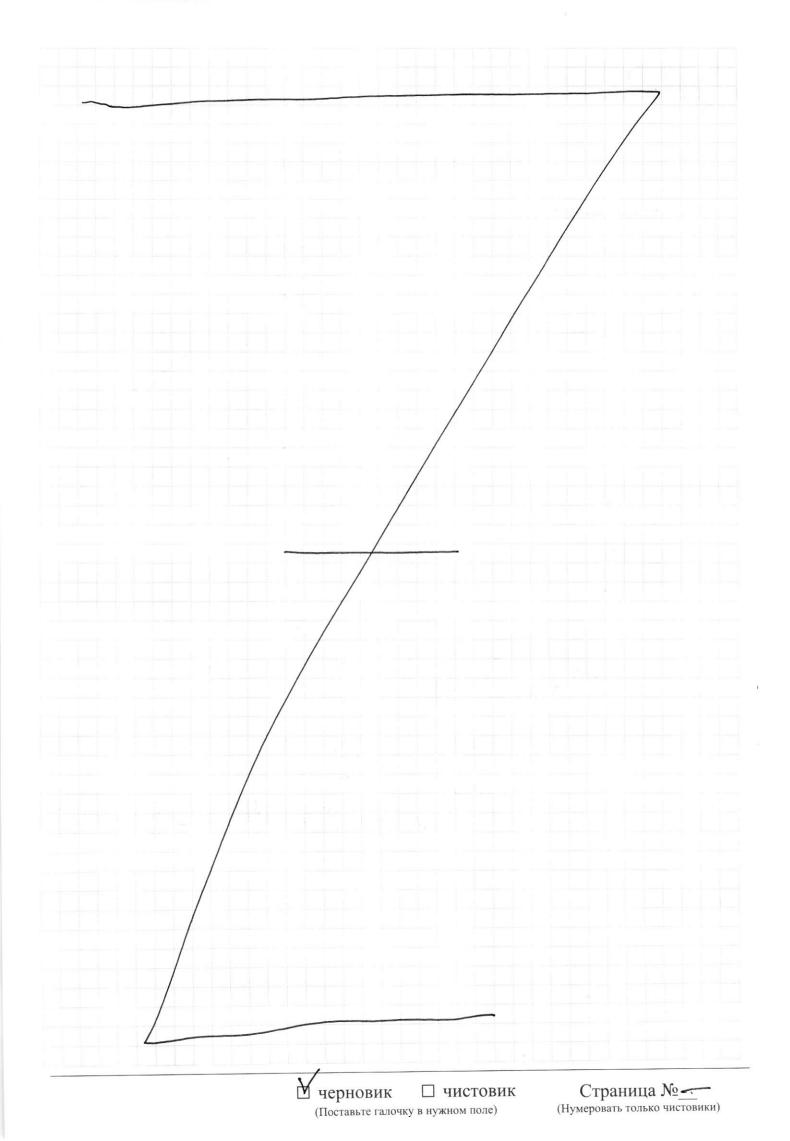

V= 253 =

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

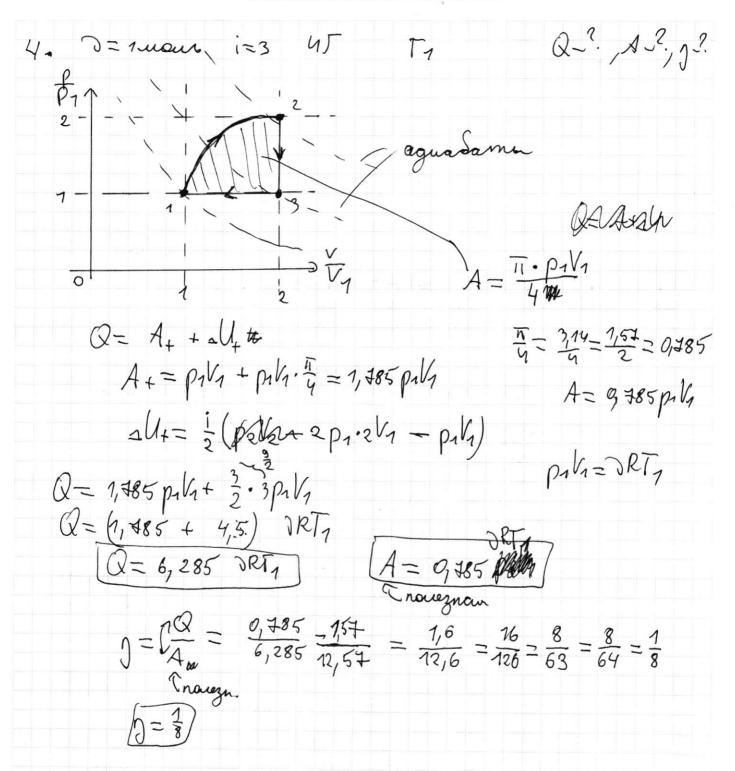

23. H. a: Nogra = 015.m = m. Vo2
Roosa 23.8.9: Nsind = mg $\begin{cases} N\cos 2 = \frac{mv_0^2}{R\cos 2} \\ N\sin 2 = my \end{cases} \begin{cases} N\cos^2 2 = \frac{mv_0^2}{R} \\ N\sin^2 2 = m^2 g^2 \end{cases}$ $N(1-\sin^2 d) = \frac{m v_0^2}{R}$ $N(1-\frac{m^2 g^2}{N^2}) = \frac{m v_0^2}{R}$ N- m2g2 = mvo2 /·N $N = \frac{m v_0^2}{R} \cdot N - m^2 g^2 = 0$ $N = \frac{m v_0^2}{R} \cdot \frac{m v_0^2}{R} \cdot N + 4 m^2 g^2$ $\frac{mV_0^2}{72} = \frac{0.4 \text{ KeV} \cdot 37 \frac{2}{5} \cdot 37 \frac{2}{5}}{1.2 \text{ KeV}} = \frac{94 \cdot 3.7 \cdot 3.7}{25} H = \frac{13,69}{3} H$ m2g2 = 9,42 R22. 102 = 42 42 = 164 $N = \frac{mvo^2}{2R} + \sqrt{\frac{mvo^2}{2R}}^2 + m^2g^2 = 14\left(\frac{13,69}{6} + \sqrt{\frac{13,69}{6}}\right)^2 + 16$ $\frac{N}{2}$ $\frac{13,69}{6}$ $\approx \frac{13,68}{6}$ $\approx 2,28$ N=2,28+5 21,1984 4,5 = 20,25 1 = 2,28+ 4,6 = 6,88 4,62=21,26 N= P= 6,88 H]

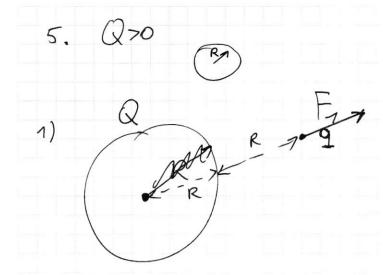


МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР

(заполняется секретарём)

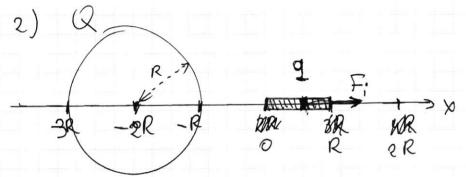




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

ШИФР

(заполняется секретарём)



$$F_{1} = \frac{kQq}{(2R)^{2}}$$

$$F_{1} = \frac{kQq}{4R^{2}}$$

EFi=Fz

na i-myroracmo comprima gensemb cura Fi

$$F_{i} = \frac{kQ_{2}q_{i}}{(X_{i}+2R)^{2}} \qquad 2q_{i} = q \cdot \frac{\Delta X}{R}$$

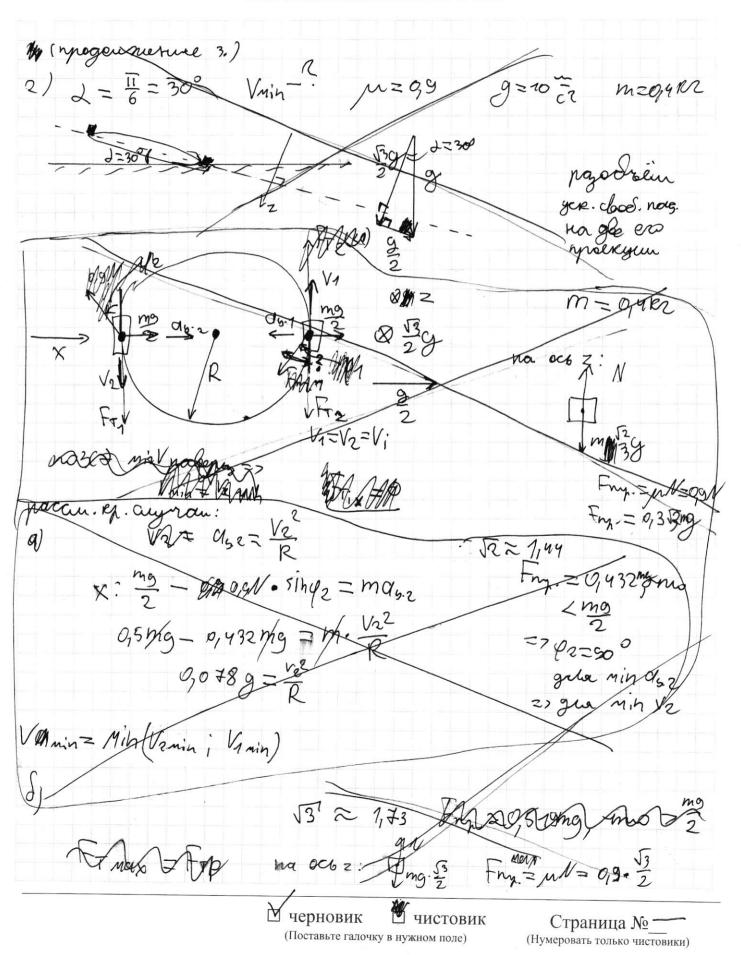
$$F_{i} = \frac{kQ_{2}}{R} \cdot \frac{\Delta X}{(X_{i}+2R)^{2}}$$

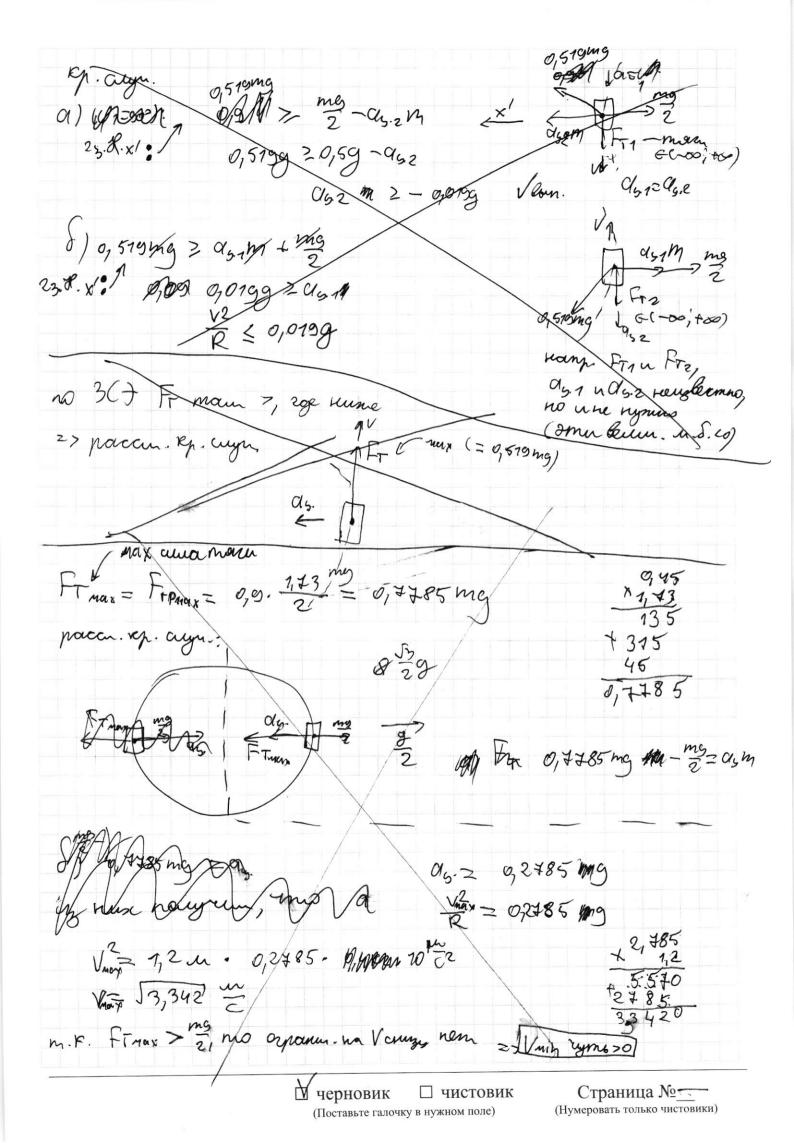
$$JF = \frac{kQ_{2}}{R} \cdot JX \cdot (X+2R)^{-2} \qquad \text{replanofpaguan}$$

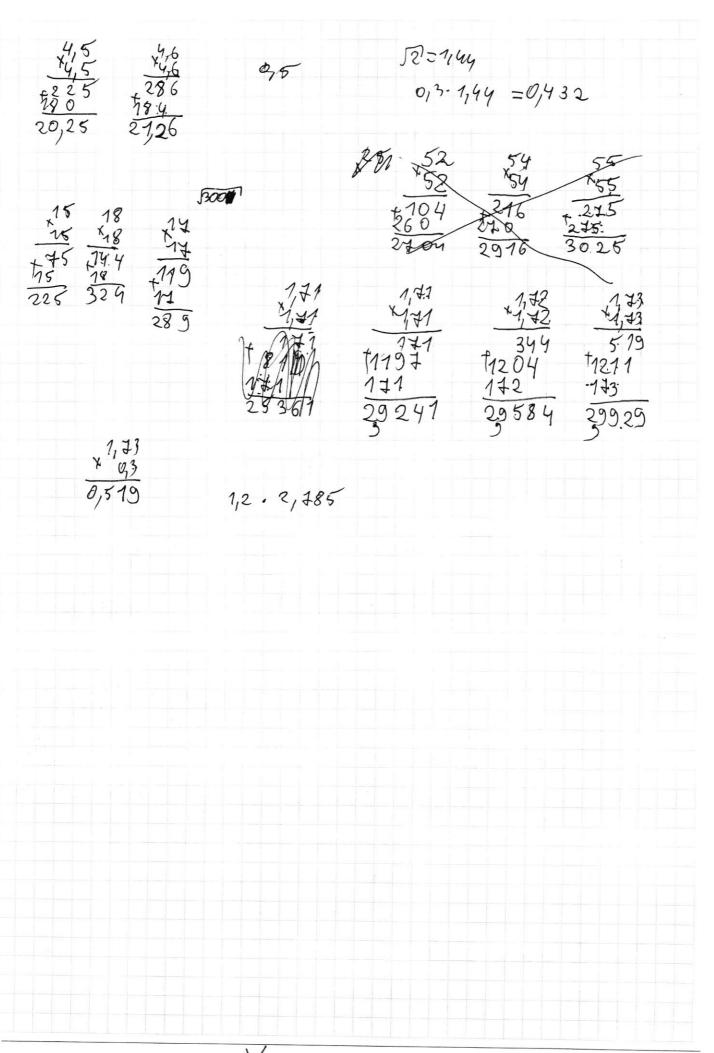
$$I_{i}=0 \qquad K^{2}R \cdot (X+2R)^{-2} dX \qquad -(X+2R)^{-1}$$

$$F_{2} = \frac{kQ_{2}}{R} \cdot \left(\left(-\frac{1}{R+2R} \right) - \left(-\frac{1}{2R} \right) \right) \qquad \frac{1}{A+2R}$$

$$F_{2} = \frac{kQ_{2}}{R} \cdot \left(\frac{1}{2R} - \frac{1}{3R} \right) = \frac{kQ_{2}}{R} \cdot \left(\frac{1}{6} \right) = \frac{kQ_{2}}{6R^{2}}$$


$$F_{2} = \frac{kQ_{2}}{6R^{2}}$$




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

	26 0 2 704	554 216 216 245 3025	\$6 \$336 \$70 3136
0000000000	+3,7 13	3,69 1,2	
	1259 12	7,69 17,4	
	13,69	49	05
	0	<u>48</u> ,01	16 +25 125 125 125 50 525
130 = 2 · 55	12 = 144 13 ² = 196	14 eng	10 50 525
J 2 J199 C.		14 156 136	5301
sin2= -11,4 t	130+4- Myzory 10,	107	J530 × 25
14.		25	V-?m
	nd=mg //	$\cos \lambda = a_g.m$	
m/2 = mg	? (1- sihd)		rosed = Voem
	31 = 20.1,2	(1-sina) N((1-sin2d) = voens
	11,4 = 20	(1-sind) N((1- mg) =
		o (7-sind) sina = 43	
3.14 1.63		5iha = 43	
314 = 160 Ziast	1,58 = 0,7 0,8	0,49	