МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОЛИМПИАДА "ФИЗТЕХ" ПО МАТЕМАТИКЕ

11 класс

ВАРИАНТ 3

ШИФР

Заполняется ответственным секретарём

1. [3 балла] Углы α и β удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{8}{17}.$$

Найдите все возможные значения $\operatorname{tg} \alpha$, если известно, что он определён и что этих значений не меньше трёх.

2. [4 балла] Решите систему уравнений

$$\begin{cases} 3y - 2x = \sqrt{3xy - 2x - 3y + 2}, \\ 3x^2 + 3y^2 - 6x - 4y = 4. \end{cases}$$

√3. [5 баллов] Решите неравенство

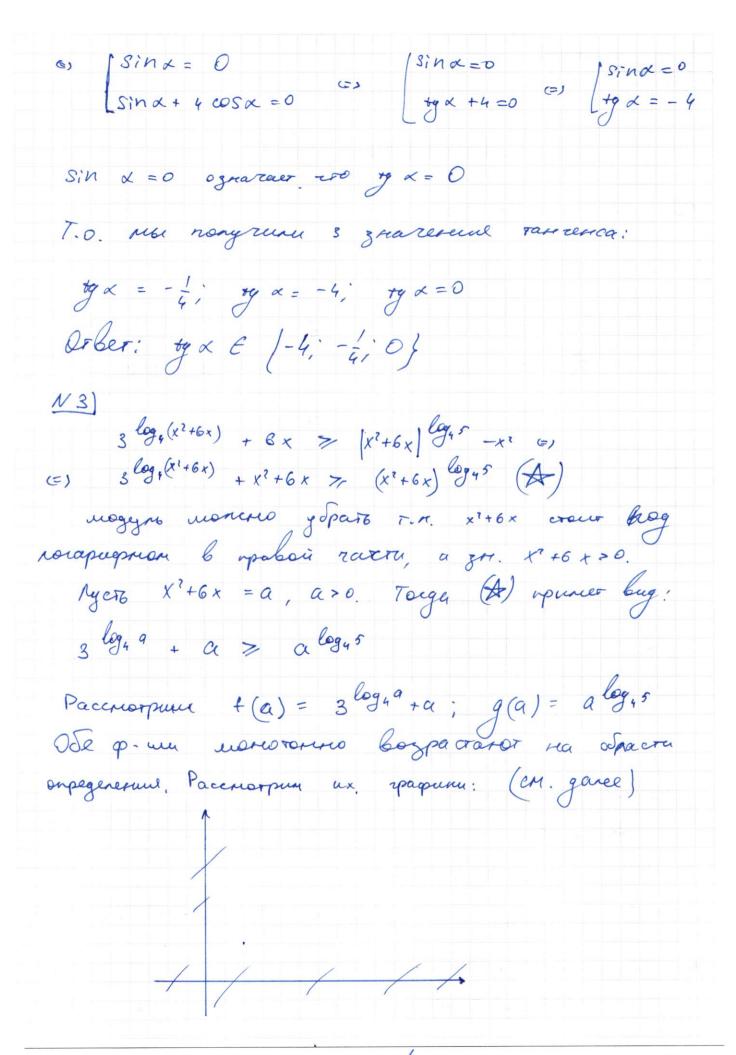
$$3^{\log_4(x^2+6x)} + 6x \geqslant |x^2 + 6x|^{\log_4 5} - x^2.$$

- 4. [5 баллов] Окружности Ω и ω касаются в точке A внутренним образом. Отрезок AB диаметр большей окружности Ω , а хорда BC окружности Ω касается ω в точке D. Луч AD повторно пересекает Ω в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает Ω в точке F. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что $CD=\frac{5}{2},\ BD=\frac{13}{2}.$
 - 5. [5 баллов] Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что $3 \le x \le 27$, $3 \le y \le 27$ и f(x/y) < 0.
- 6. [5 баллов] Найдите все пары чисел (a;b) такие, что неравенство

$$\frac{4x - 3}{2x - 2} \geqslant ax + b \geqslant 8x^2 - 34x + 30$$

выполнено для всех x на промежутке (1;3].

7. [6 баллов] Дана пирамида PQRS, вершина P которой лежит на одной сфере с серединами всех её рёбер, кроме ребра PQ. Известно, что QR=2, QS=1, $PS=\sqrt{2}$. Найдите длину ребра RS. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

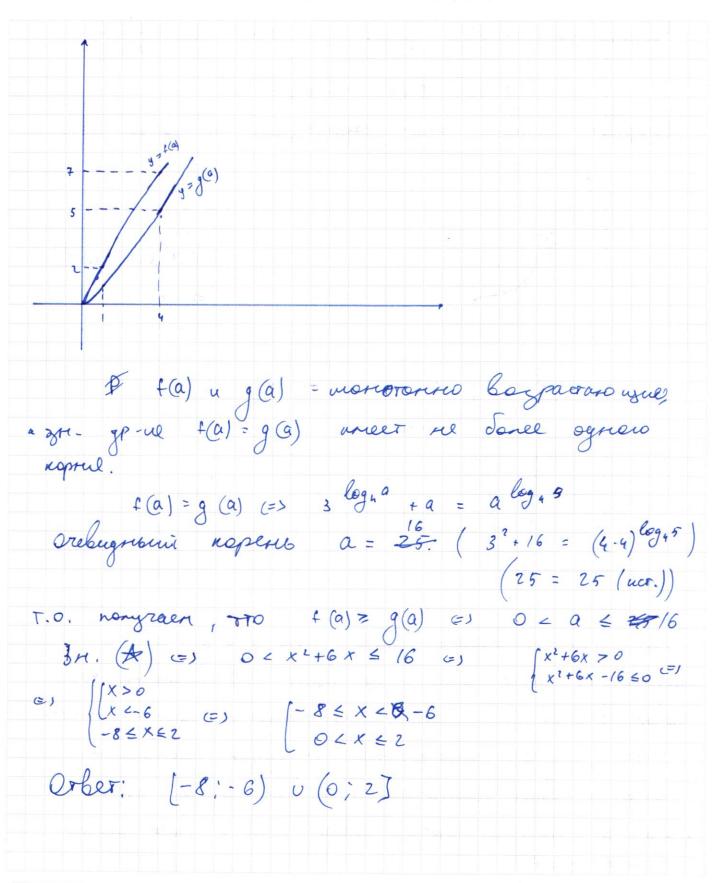


«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

I	I	Π	4	ď.	I)

(заполняется секретарём)

$N1$ Sin $(2x+2\beta)=-\frac{1}{\sqrt{1x'}}$
(1) $\sin \left(2\kappa + 4\beta\right) + \sin 2\alpha = -\frac{8}{\sqrt{17}}$ (=)
(=, 2. $\sin (2x + 2B)$. $\cos 2B = -\frac{8}{17}$ (=) (=) $-\frac{2}{57} \cdot \cos 2B = -\frac{8}{57}$ (=) $\cos 2B = \frac{4}{517}$
Touga Sin $2\beta = \pm \frac{1}{\sqrt{17}}$
(2) $\sin (2\alpha + 2\beta) = \frac{\sin 2\alpha \cdot \cos 2\beta + \sin 2\beta \cdot \cos 2\alpha}{\sqrt{17}} = -\frac{1}{\sqrt{17}}$ Nogerabum a) $\sin 2\beta = \frac{1}{\sqrt{17}}$; $\cos 2\beta = \frac{4}{\sqrt{17}}$
$\sin 2\alpha \cdot \frac{4}{\sqrt{17}} + \frac{1}{\sqrt{17}} \cdot \cos 2\alpha = -\frac{1}{\sqrt{17}} = 0$
(=) $4\sin 2\alpha + \cos 2\alpha = -1$ of (3) $\cos^2 \alpha + 8\sin \alpha \cdot \cos \beta + \sin^2 \alpha = -1$ (=)
$= 3 \cos^2 x + 8 \cdot \sin x - \cos x - \sin^2 x + \sin^2 x + \cos^2 x = 0 = 0$
$(3) 2\cos^2 x + 8\sin x \cdot \cos x = 0 (3)$ $(4) \cos x \left(\cos x + 4\sin x\right) = 0$
No yen. to a onpegenen, zH. cos x x 0. Conparan:
$\cos \alpha + 4\sin \alpha = 0 (=) 1 + 4 + g\alpha = 0 (=) 4$ $\int \sin 2\alpha = -\frac{1}{\sqrt{12}} : \cos 2\beta = \frac{4}{\sqrt{12}}$
$\sin 2\alpha \cdot \frac{4}{517} - \frac{1}{517} \cdot \cos 2\alpha = -\frac{1}{517} = 317 = 4 \sin 2\alpha - \cos 2\alpha + 1 = 0 = 0$
(=) $8 \sin \alpha \cdot \cos \alpha - \left(\frac{\sin^2 \alpha - \cos^2 \alpha - \sin^2 \alpha}{\cos^2 \alpha - \sin^2 \alpha}\right) + \sin^2 \alpha + \cos^2 \alpha = 0$ (=)
(=) 8 Sin x · cosx + 2 Sin2x =0 (=) Sinx(sinx + 4 cosx) =0 cm, gance



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР	¥.	

(заполняется секретарём)

NG 4x-3 & ax+b > 8x2-34x+30 $f(x) = \frac{4x-3}{2x-1}$; $f(x) = 2 + \frac{1}{2(x-1)}$ soux opynnymi; ma T.O. Han resolvegumo recita rance a u b, 200 y=ax+b rposcoguer ne nunce g(x) u ne boure f(x) le range upu Modern X & (1; 3]. Myers you reambrea uperisis y=ax+6 - 200 B (car. pucysion). B oyeger randonsuum (nosop. a byget Haunerbuum) B von cryrae, Roiga y = ax +6 speriger repez rormy (3;0) u dyger nacorbal rpagnina y=f(x).

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

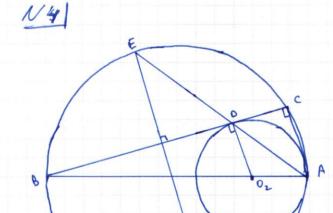
ШИФР

(заполняется секретарём)

$f'(x) = -\frac{1}{2} \cdot \frac{1}{(x-1)^2}$
Hannen yp-us nacarentrisis a kpuboti spagnuna A(x);
$y = -\frac{1}{2} \cdot \frac{1}{(x_0-1)^2} (x-x_0) + 2 + \frac{2}{2(x_0-1)}$
Kan une zemerum pance, 6 upegenssion crysalt
Kan une zemerum pance, l'apegenssion engralt gannail aprèner aposegnir repez (3:0)! Rogerabure;
$B = -\frac{1}{2} \cdot \frac{1}{(x_0 - 1)^2} \left(3 - x_0 \right) + 2 + \frac{1}{2(x_0 - 1)}$
Marigen Xo: grunoneum ode lacra rea 2(xo-1) 7, x. zagara paccuarpudaeral gul X + (1, 3]:
zagara paccuarpudaeral que X E (1, 3).
0 = (3 - Xo) (3 - Xo) + 2/(xot) + 2 (xo-1)
$0 = -\frac{3}{4} \left(\frac{3}{x_0} - \frac{3}{x_0} + \frac{4}{x_0} \left(\frac{x_0 - 1}{x_0} \right)^2 + \frac{x_0 - 1}{x_0} \right) = 0$ $= \frac{4}{x_0} \left(\frac{x_0^2 - 2x_0 + 1}{x_0} \right) + \frac{x_0 - 3}{x_0} + \frac{x_0 - 1}{x_0} = 0$
=> 4x02-8x0+4+2x0-4=0 => 4x02-6x0=0 e)
(=) [X0=0 [Ke gy. gen. X \(\(\) [, 3]
$X_0 = \frac{3}{2}$
T.O. TOTKE KACATURE: (3.3)
T.O. vorka Kacarune: $(\frac{3}{2};3)$ Barnerun, voo repairment rebail vorka $g(x)$: $(1;8)$;
rocka kacarul: $(\frac{3}{2}, 3)$ 4 rocka $(3, 0)$

rencar na ognoù mperioù y = -2x+6,

a gri. uescognal nep-lo boinonneered


6 eguncoberrion organe, coaga a==z; 6=6.

(unare y = ax +6 neuz denois apaiger you

nenotopon X' E (1; 3] bounce f(x) une runce g(x))

Orbei: =2,6 a=-2; b=6

$$BD = \frac{13}{z}$$

$$CD = \frac{5}{z}$$

1) LBCA=30° (onup. Me quariers AB.)

Torga DBDO, ~ DBCA.

$$\frac{BO_{2}}{BA} : \frac{BD}{BC}$$

$$BO_{2} = 2R - r$$

$$AB = 2R$$

$$\frac{BO_{2}}{BA} : \frac{BD}{BC} = \frac{2R-r}{2R} = \frac{13}{2 \cdot 9} (2)$$

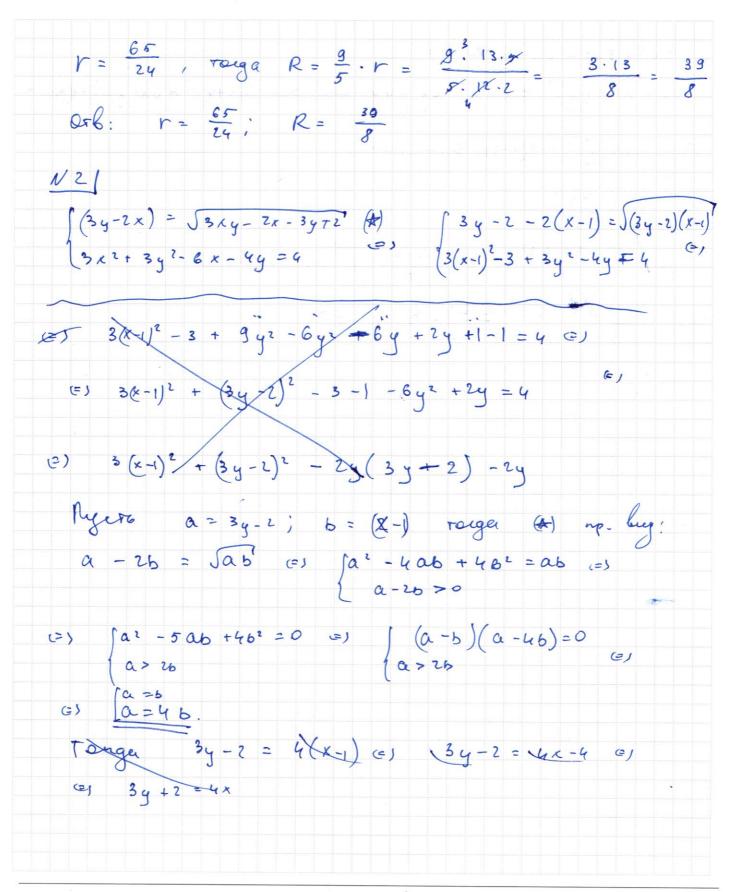
$$2R-r = \frac{13}{2R} = \frac{13}{2 \cdot 9} (2)$$

$$2R-r = \frac{13}{2R} = \frac{13}{18} (2) \cdot \frac{1}{2R} = \frac{5}{18} (3)$$

$$2R = \frac{5}{4} = \frac{9}{5} r$$

2) KDBDO2: up/y. No r. Nuparopa:

$$(2R-r)^{2} = r^{2} + BD^{2} = (\frac{18}{5}r-r)^{2} = r^{2} + \frac{169}{4} = (18)^{2}$$


$$(\frac{18}{5}r)^{2} = r^{2} + \frac{169}{4} = (18)^{2} = \frac{169}{4} = (18)^{2} = (18)^{2}$$

$$(\frac{18}{5}r)^{2} = r^{2} + \frac{169}{4} = (18)^{2} = (18)^$$

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

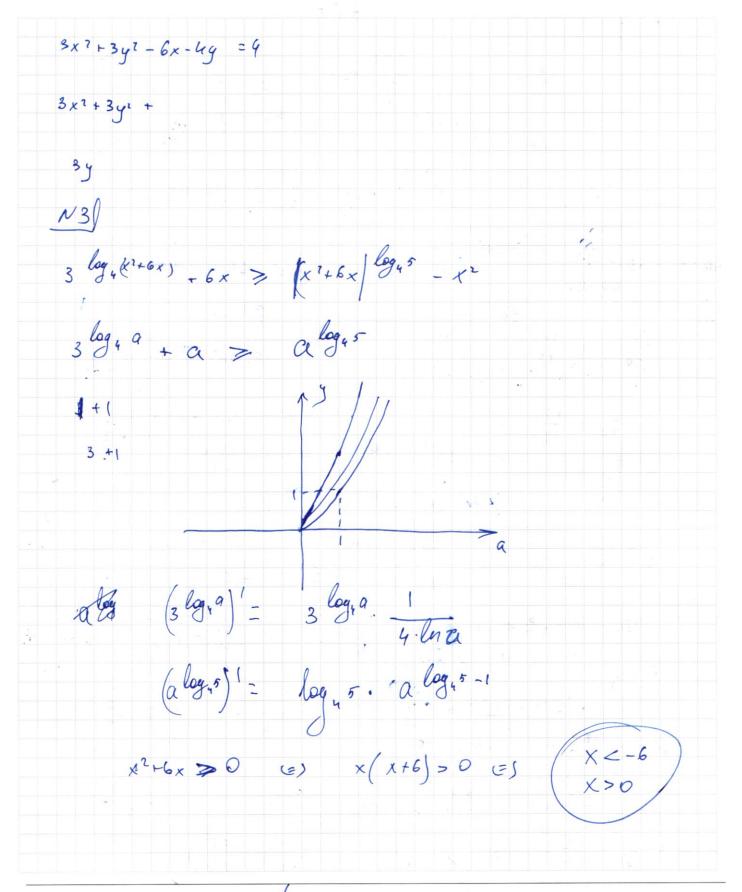
ШИФР	

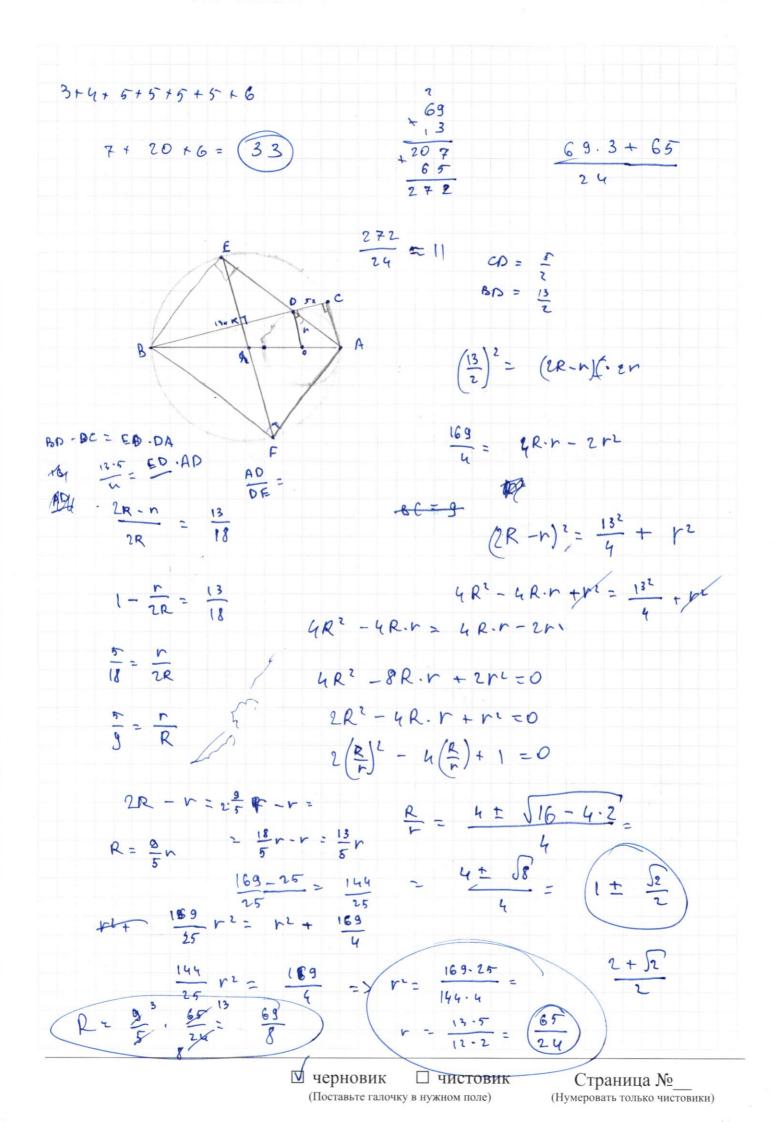
3x2+3y1-6x-4y=0 (=)

(5)
$$3(x+y)^2 - 2(y-1)(3x-2) = 0$$

$$(1) \quad y = \frac{4x-2}{3}$$

3.
$$\left(x + \frac{4x-2}{3}\right)^{2} - 2 \left(\frac{4x-2}{3} - 1\right) \left(3x-2\right) = 0$$
 (c)

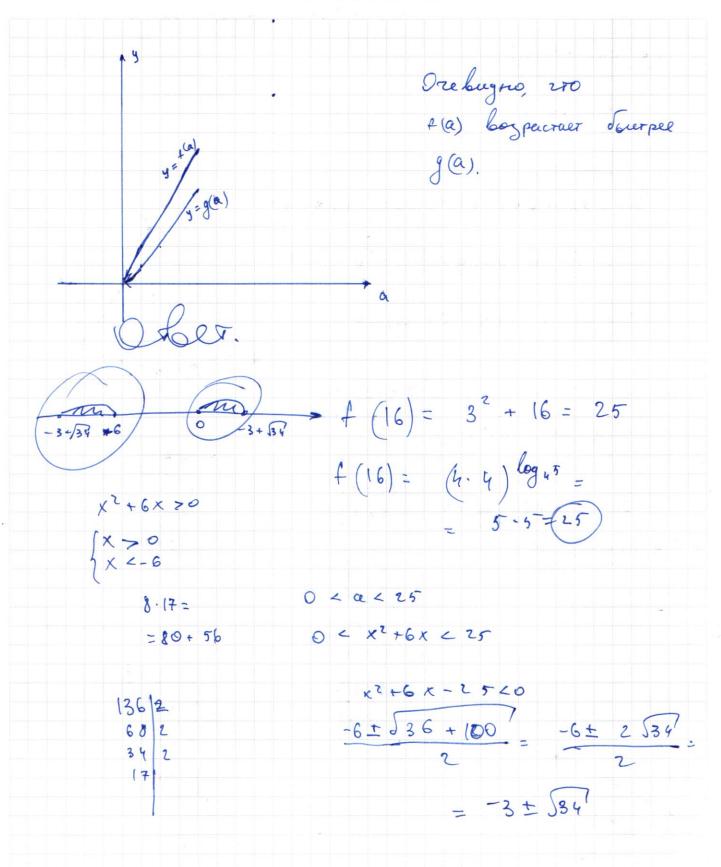

$$(=)$$
 $\frac{(7\times-2)^2}{3}-2(\frac{X-2}{3})\cdot(3\times-2)=0$



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР	

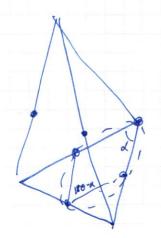
(заполняется секретарём)

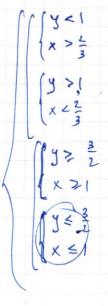


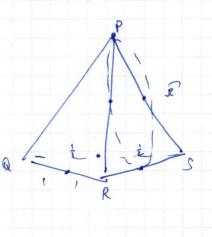
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)


$$3(x-y)^2 + 6x(y-1) - 4(y-1) = 0$$

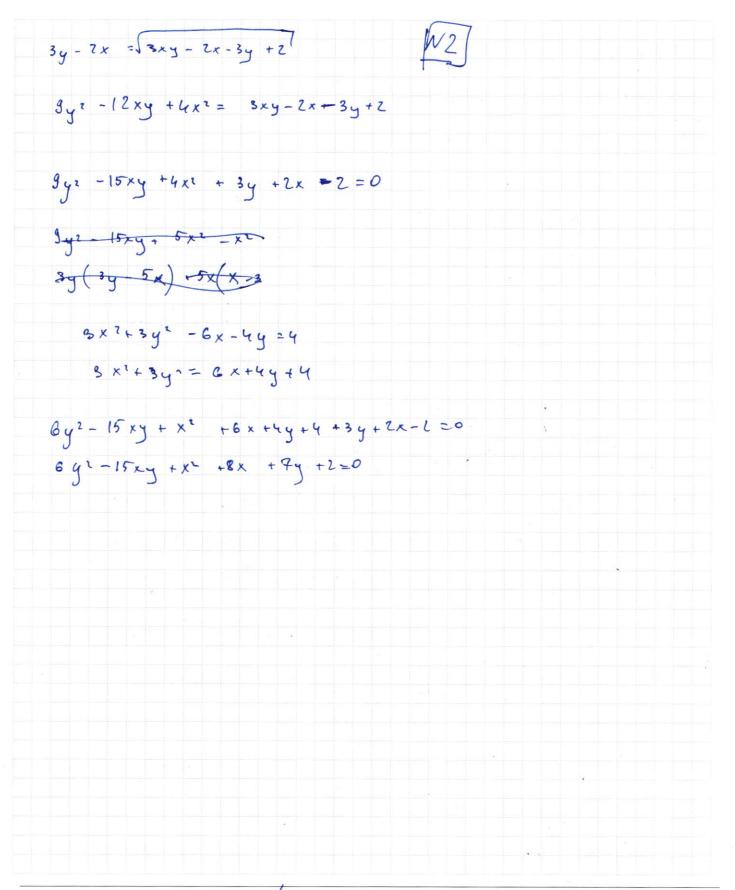

$$3(x-y)^2 + (y-1)(6x-u) = 0$$

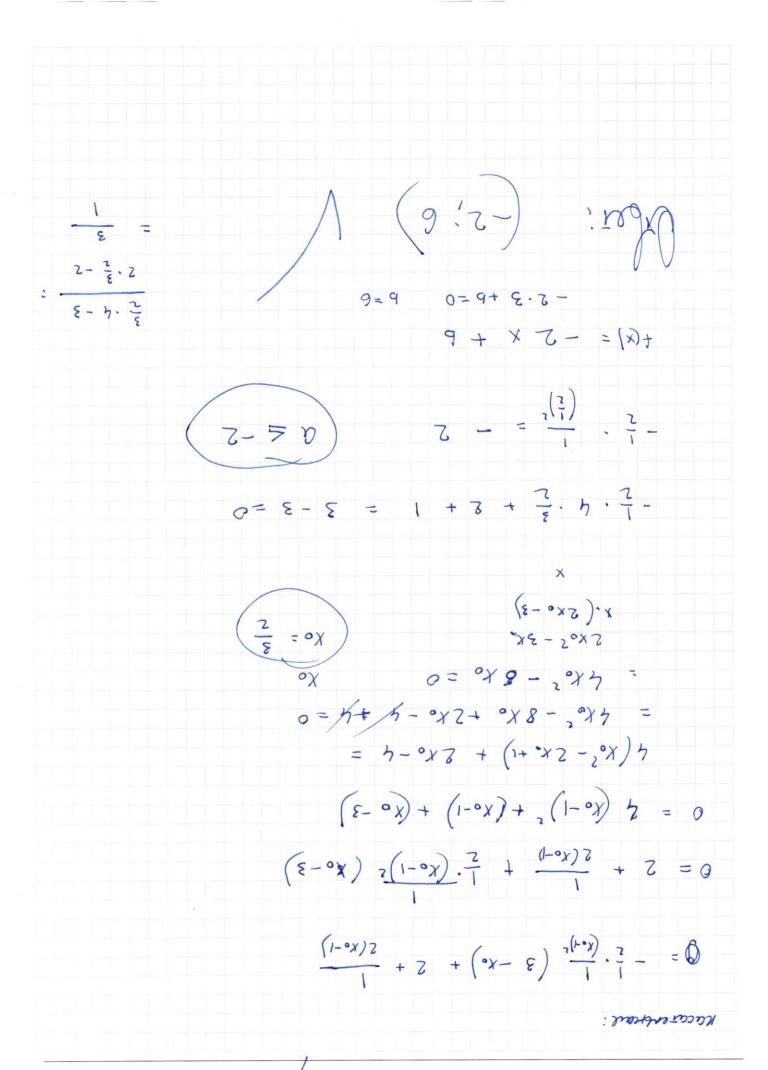

$$\int_{3}^{2} (x-y)^{2} + 2(y-1)(3x-2) = 0$$

$$\int_{3}^{2} (x-y)^{2} + 2(y-1)(3x-2) = 0$$

$$(x-1)^2 + 3y^2 - 6y^2 - 6y + 2y = 4$$

3(x-1)²+3+(3y-2)²-4

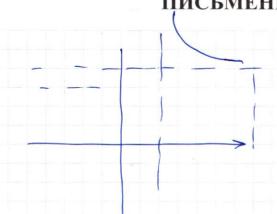

 $\begin{cases} 1 \le y \le \frac{3}{2} \\ x \le \frac{3}{2} \end{cases}$ $\begin{cases} y \le \frac{3}{2} \end{cases}$



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

III	И	Φ	P

(заполняется секретарём)



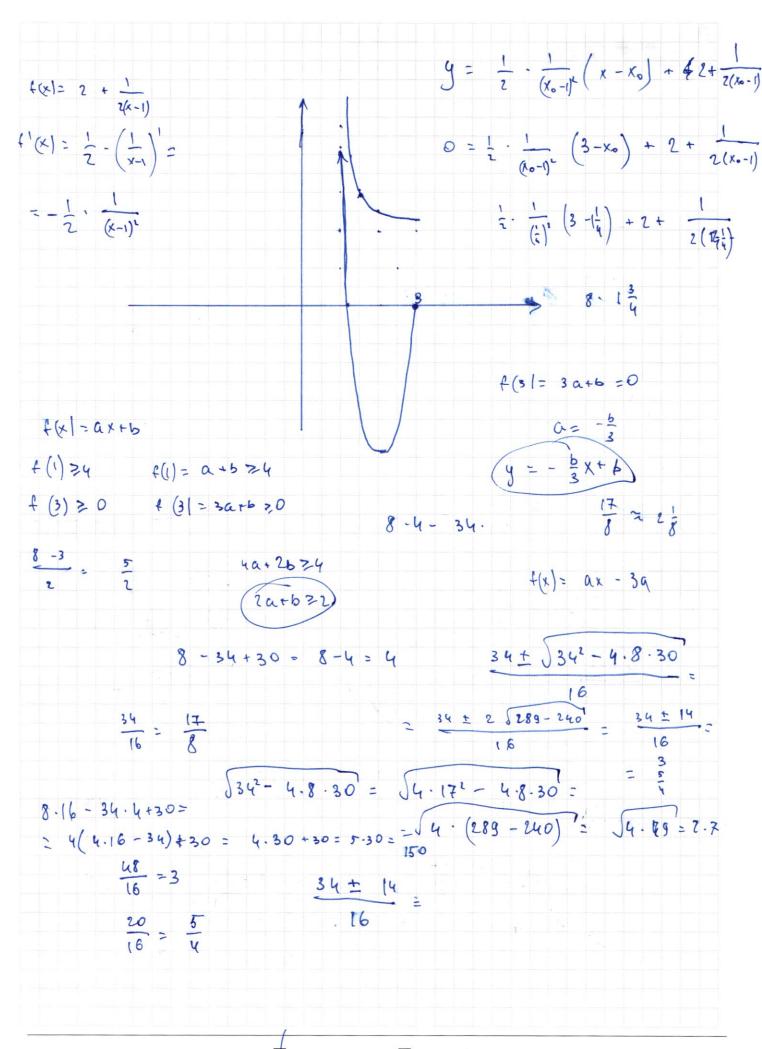
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР

(заполняется секретарём)

$$\frac{34}{16} = \frac{17}{8}$$

$$-x-2+2x-1 = 1 + \frac{2x-1}{2x-2} = \frac{2x-1}{2x-2}$$

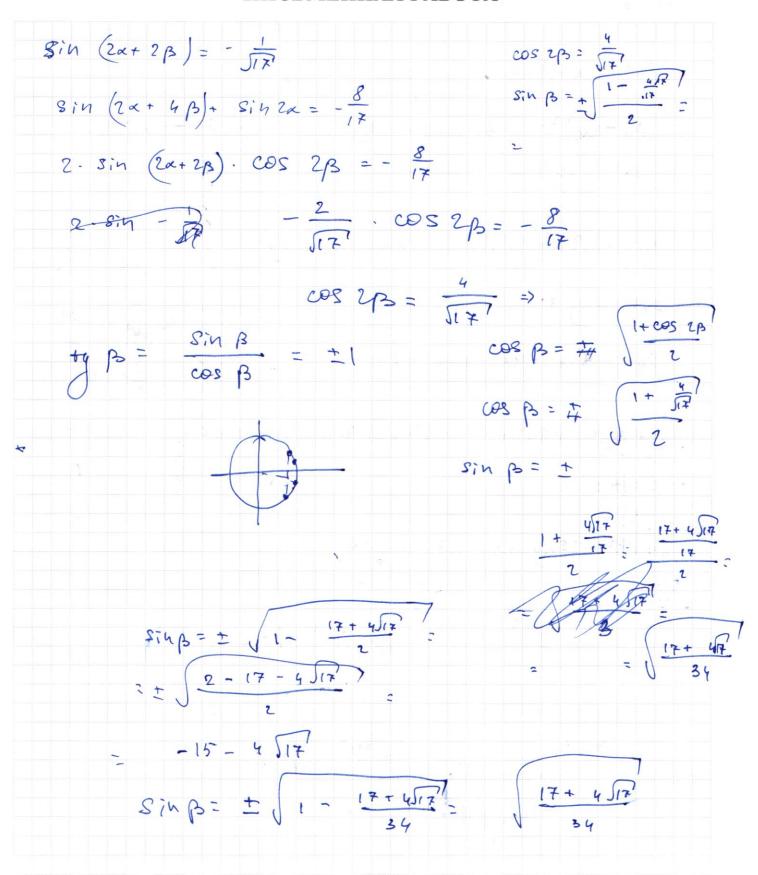

$$\frac{4x-3}{2x-2} = \frac{2x-2+2x-1}{2x-2} = 1 + \frac{2x-1}{2x-2} = 1 + \frac{2x-2+1}{2x-2} = 2 + \frac{1}{2x-2}$$

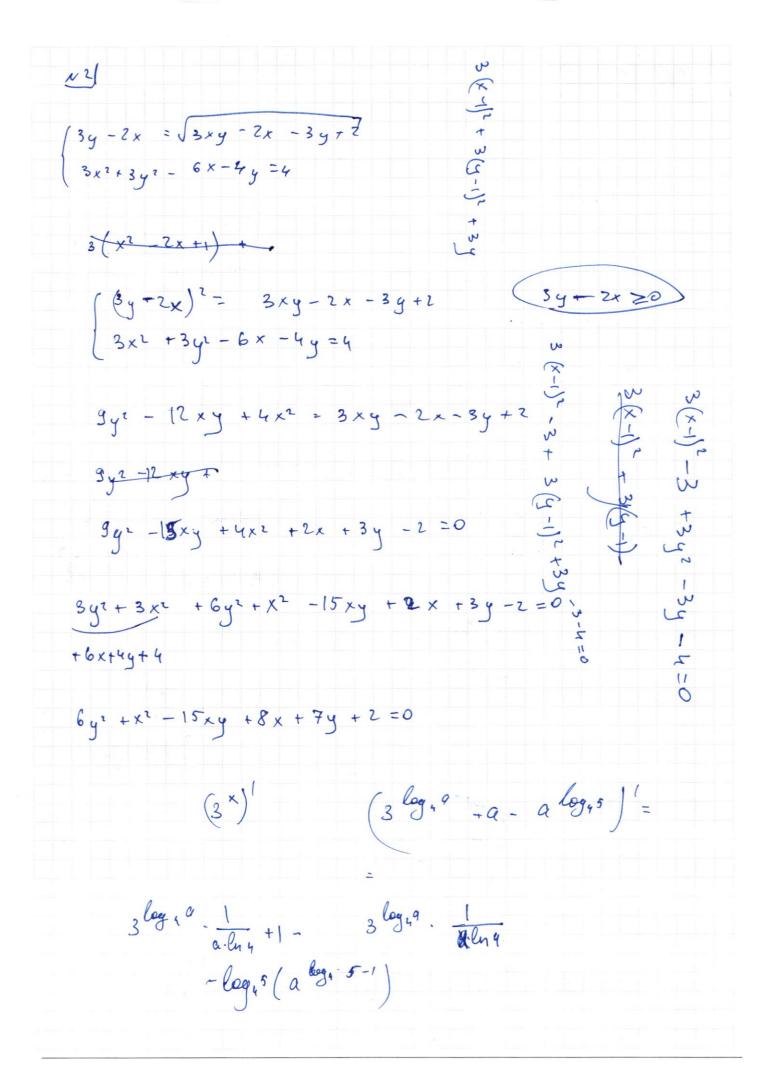
$$\frac{12-8}{6-2} = \frac{9}{4} = 2\frac{1}{4}$$

$$X = \frac{59}{16} = \frac{2 \times 13}{8}$$

$$X = \frac{26}{16} = \frac{13}{8}$$

$$\frac{4\times -3}{2\times -3} \in \left[2\frac{1}{4}, \infty\right]$$





«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

□ черновик □ чистовик (Поставьте галочку в нужном поле)

Страница №___ (Нумеровать только чистовики)

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

2.
$$\sin (x_1, 2\beta) \cdot \cos 2\beta = -\frac{d}{\beta}$$

$$-\frac{1}{\sqrt{7}} \cdot \cos 2\beta = -\frac{1}{\sqrt{7}} = \cos 2\beta = \frac{4}{\sqrt{17}} \sin \beta = \frac{1}{\sqrt{7}}$$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\beta \cdot \cos 2\sin 2\beta \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\beta \cdot \cos 2\sin 2\beta \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\beta \cdot \cos 2\cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\beta \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\beta \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\beta) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot \cos 2\alpha$
 $\sin (x_1, 2\alpha) = \sin 2\alpha \cdot$

Sin (2 x + 2 B) = 1 3x2+3q2= 6x+4y +4 342 - 15 xy + 4x2 94 (4-3x) +6x(x-322+ 3ye + Bry -6 x (y+1) - 4 (y+1) = 0 (= 5 3 (x+y)2 3y-2x = \(\sig(x-1)\) J (3y-2) (x-1