# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

# ОЛИМПИАДА "ФИЗТЕХ" ПО МАТЕМАТИКЕ

### 11 класс

ВАРИАНТ 2

ШИФР

Заполняется ответственным секретарём

1. [3 балла] Углы  $\alpha$  и  $\beta$  удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{5}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{2}{5}.$$

Найдите все возможные значения  $\operatorname{tg} \alpha$ , если известно, что он определён и что этих значений не меньше трёх.

2. [4 балла] Решите систему уравнений

$$\begin{cases} x - 12y = \sqrt{2xy - 12y - x + 6}, \\ x^2 + 36y^2 - 12x - 36y = 45. \end{cases}$$

3. [5 баллов] Решите неравенство

$$10x + |x^2 - 10x|^{\log_3 4} \geqslant x^2 + 5^{\log_3(10x - x^2)}.$$

- 4. [5 баллов] Окружности  $\Omega$  и  $\omega$  касаются в точке A внутренним образом. Отрезок AB диаметр большей окружности  $\Omega$ , а хорда BC окружности  $\Omega$  касается  $\omega$  в точке D. Луч AD повторно пересекает  $\Omega$  в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает  $\Omega$  в точке E. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что  $CD = \frac{15}{2}$ ,  $BD = \frac{17}{2}$ .
- 5. [5 баллов] Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что  $2 \leqslant x \leqslant 25$ ,  $2 \leqslant y \leqslant 25$  и f(x/y) < 0.
- 6. [5 баллов] Найдите все пары чисел (a;b) такие, что неравенство

$$\frac{16x - 16}{4x - 5} \leqslant ax + b \leqslant -32x^2 + 36x - 3$$

выполнено для всех x на промежутке  $\left[\frac{1}{4};1\right]$ .

7. [6 баллов] Дана пирамида KLMN, вершина N которой лежит на одной сфере с серединами всех её рёбер, кроме ребра KN. Известно, что  $KL=3,\ KM=1,\ MN=\sqrt{2}$ . Найдите длину ребра LM. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

| T | П | И | d | D) | P |
|---|---|---|---|----|---|

(заполняется секретарём)

| N5                                                                                                                                                                                         |               |            |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------------|
| PAS varava onpegenun neromopue chaice                                                                                                                                                      | uba m         | nou py     | шкуш:                |
| Пусть т-составные челое число и т=9+92.                                                                                                                                                    |               |            |                      |
| Torgo f(m) = f(g gn. + f(gn) = f(g gn. 2) + f(g                                                                                                                                            | 1 + f(g)      | =,,,=      |                      |
| = $f(q_1) + f(q_2) + \dots + f(q_n) = \begin{bmatrix} \frac{q_1}{4} \end{bmatrix} + \begin{bmatrix} \frac{q_2}{4} \end{bmatrix} + \dots + \begin{bmatrix} \frac{q_n}{4} \end{bmatrix}$ (7) |               |            | (1)                  |
|                                                                                                                                                                                            |               |            |                      |
| Приненили свойство                                                                                                                                                                         | f(ab) = f(ab) | (a) + t(b) | )                    |
| Haugém f(1):                                                                                                                                                                               |               |            |                      |
|                                                                                                                                                                                            |               |            |                      |
| $f(a) = f(a \cdot a \cdot a \cdot a \cdot a) = f(a) + f(a) + f(a) + f(a) + f(a) = 5 \cdot f(a)$                                                                                            | 1)            |            |                      |
| Torga 4.f(1)=0 unu f(1)=0. (2)                                                                                                                                                             |               |            |                      |
| 0 / / 1                                                                                                                                                                                    |               | (m > 1, ye | noe)                 |
| $f(1) = f(m \cdot \frac{1}{m}) = f(m) + f(\frac{1}{m}) = 0 \implies f(\frac{1}{m}) = -$                                                                                                    |               | (3)        |                      |
| Пользуясь (1) найдён f(n) для всех n [2; 15]:                                                                                                                                              | 'n            |            | 23 5<br>24 0<br>25 2 |
| · ·                                                                                                                                                                                        | 2             | 0          | 23 5                 |
| Переформулируем условие:                                                                                                                                                                   | 3             | 0          | 25 2                 |
| $f(x)<0 \iff f(x)+f(x)<0 \iff f(x)< f(y)$                                                                                                                                                  | 5             | 1          |                      |
|                                                                                                                                                                                            | 6             | 0          |                      |
| Несложием подсчётом из таблицы получаем, что                                                                                                                                               | 8             | 0          |                      |
| Пар всего 206 штук                                                                                                                                                                         | 9             | 0          |                      |
| 14.10 + 7.7 + 4.3 + 3.1 + 1.2 = 206)                                                                                                                                                       | 10            | 1          |                      |
|                                                                                                                                                                                            | 11            | e e        |                      |
| UTBET: 206                                                                                                                                                                                 | 13            | 3          |                      |
|                                                                                                                                                                                            | 14            | 1          |                      |
|                                                                                                                                                                                            | 15            | 1          |                      |
|                                                                                                                                                                                            | 17            | 4          |                      |
|                                                                                                                                                                                            | 13            | 0          |                      |
|                                                                                                                                                                                            | 19            | 4          |                      |
|                                                                                                                                                                                            | 20            | 1          |                      |
|                                                                                                                                                                                            | 22            | 1 2        |                      |

I Пусть 0-центр  $\Omega$ , Q-центр  $\omega$ Как известно, при внутреннем касаним центры скрупеностей и точка касаних ленсам на одной промой, отсюда  $Q \in AB$ .

2 ACB =90° (OTUPAETCA HA GUAMETP), NO TOUT

же причине ZAFB=90° Пусть ABNFE = 0

LOKB = LQDB = LACB = 90° => ACHQDHOK (COOTBETCTBEHULLE YTALL PABUL), OTTYGO XE

ABOK~ABQD~ABAC (170 gByn yrnam); LB-oduguū

Uz TOZO, UTO FEII QD CNEGYET, UTO LÕEA = LQDA; HO LQDA = LQAD (YME) TPU

LQAD=LBFE COMUPANTER HA OGNY GYTY BE)

Основании в р/б тр.)

Q

LÕEA = L FBA (OMUPAUTER HA OGHY GYTY FA)

LBEA = LBEO + LÕEA = 90° (OTIUPAETCA HA GUARETP)

LFBE = 180°-LBFE-LFEB = 180°-LFEA - LFEB = 180°-LBEA = 90°, OTCHOGO FE-GUARTER,

а значит  $\widetilde{O} = O$ .

AB · BM = BD 2 ( Teopena o Kacarenouoù u cenyujeñ); MycTo AB = 2R, AM = 2n.

2R (2R-2n)=BD20

 $\triangle ABC \sim \triangle QBD \Rightarrow \frac{AB}{QB} = \frac{BC}{BD}$  unu  $\frac{2R}{2R-r} = \frac{BC}{BD} \Rightarrow 2R \cdot BD = 2R \cdot BD - r \cdot BD - r \cdot CD + 2R \cdot CD$ 

 $r \cdot BC = 2R \cdot CD \implies r = 2R \cdot \frac{CD}{BC} = 2R \cdot \frac{\frac{15}{2}}{\frac{15}{2} + \frac{17}{2}} = \frac{15}{16}R$ 

 $\Theta$ :  $\frac{1}{4}R^2 = BD^2 = > R = 2 \cdot BD = 17$ ;  $N = \frac{15 \cdot 17}{16}$ 

 $\overline{I}$ . Type  $\triangle AQD \sim \triangle AQE$  (TO gray years) =>  $\frac{AQ}{AQ} = \frac{AD}{AE}$  UNU  $\frac{\Gamma}{R} = \frac{AD}{AE}$ 

BD·CD = AD·DE (T. O repe cereuu xopg)

 $\frac{r}{R}AD + \frac{r}{R} \cdot ED = AD \Rightarrow ED = \frac{R-r}{r} \cdot AD$ 



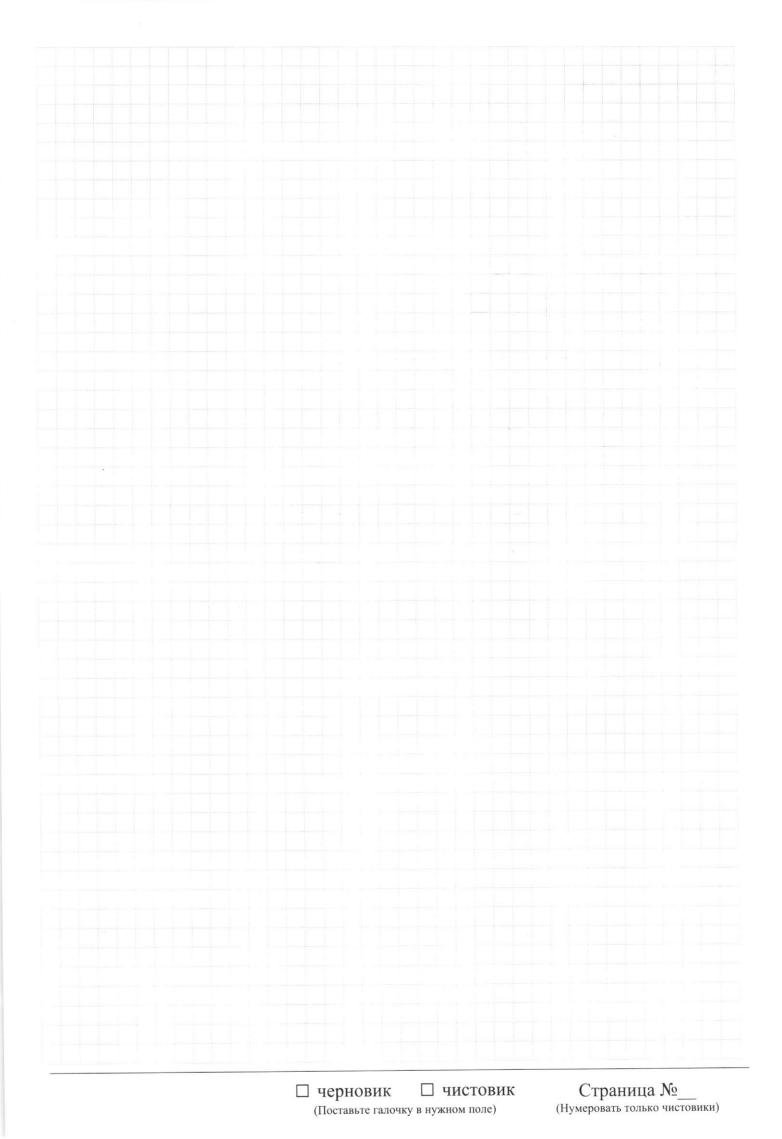
«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

$$BD \cdot CD = AD^{2} \cdot \frac{R-n}{r}$$

$$AD = \sqrt{\frac{r}{R-r}} \cdot BD \cdot CD = \frac{15\sqrt{12}}{2}$$


$$ED = \frac{19 - \frac{15 \cdot 17}{16}}{\frac{15 \cdot 17}{16}} \cdot \frac{15\sqrt{12}}{2} = \frac{\sqrt{17}}{2}$$

$$AE = 8\sqrt{17} \text{ ; } AF = \sqrt{FE^2 - AE^2} = \sqrt{34^2 - 64.17} = 2\sqrt{17} \text{ (2 FAE = 90°, 7.K. OPUP. WA GUOHERP)}$$

$$SIN \ \angle AFE = \frac{AE}{FE} = \frac{8\sqrt{17}}{2.17} = \frac{4}{\sqrt{17}} = \sqrt{\frac{16}{17}} \text{ ; } \angle AFE = avesin}\left(\sqrt{\frac{16}{17}}\right)$$

$$S_{AEF} = \frac{1}{2} \cdot AF \cdot AE = \frac{1}{2} \cdot 8 \cdot 2 \cdot \sqrt{17} \cdot \sqrt{17} = 8 \cdot 17 = 136$$

Ответ: радиче большей - 17; радиче меньшей - 
$$\frac{15-17}{16}$$
; LAFE=arcsin ( $\sqrt{\frac{16}{17}}$ );  $S_{AEF} = 136$ 



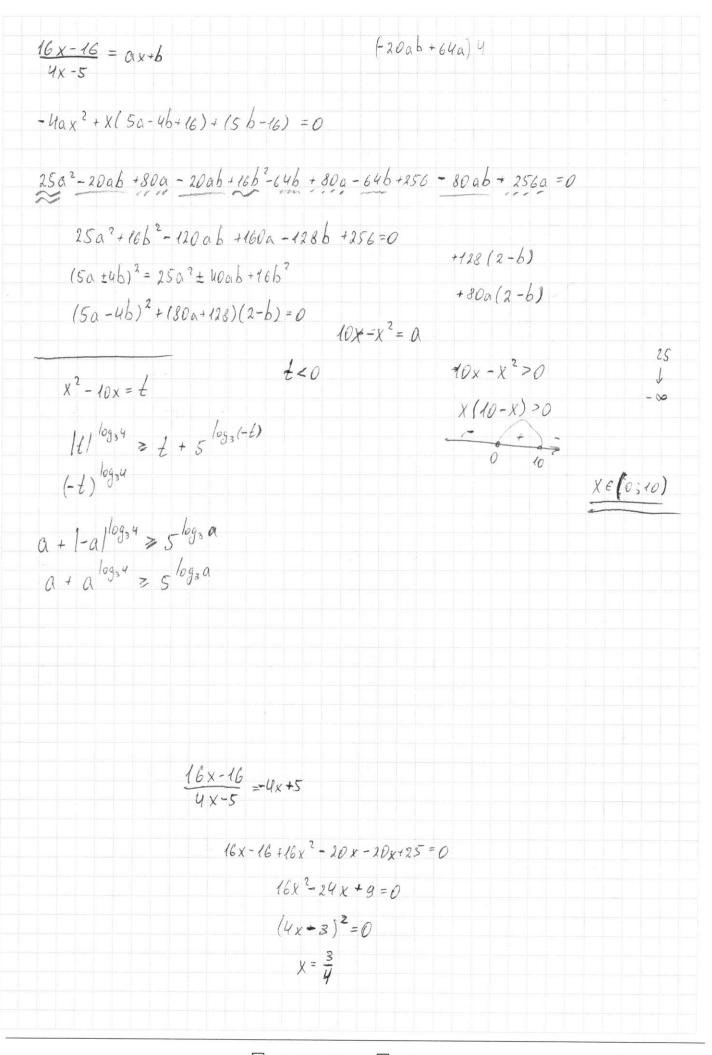


«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

### ПИСЬМЕННАЯ РАБОТА

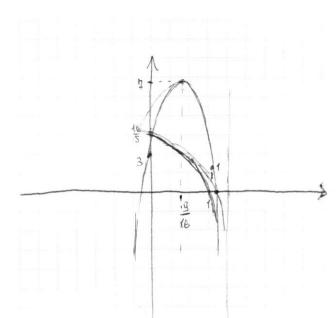

Начертим Эспизы графинов  $f(x) = -32x^2 + 36x - 3$  и  $g(x) = \frac{16x - 16}{4x - 5}$  в области (18; 7) - Вершина Параболы f(x) XE [4; 1]. f(0)=-3; f(1)=4; f(1)=1 f↑ Ha Xe[4; 9]; fl Ha Xe(9;1] gl Ha XE[i;1]  $g(0) = \frac{16}{5}; g(\frac{1}{4}) = 3; g(1) = 0$ Уравнением ах+6=4 ножио задашь modio npanyo, Hounse republicanto bourseurema ua xe[i; 1], eau marman zancama wenczy gragukanu f(x) u g(x). 3 HAYUT, 3 & a. 4. 6 & 4 ; 0 & a+6 & 1 U пряная не навается h(4)=a.1+6 h(1)=a+6 Заметим, что если пря мая проходит через высшие точки (434) и (131), TO ONA WHEET BUG Y = -4x+5, TPOBEPUM, REPECENDET NU OHA TUREPOLONY: 16x-16 =-4x+5  $\frac{16x - 16 + 16x^2 - 20x - 20x + 25}{4x = 5} = 0$ Ha X = 5 : 16x2-24x+9=0  $(4x-3)^2=0$  $X = \frac{3}{4}$ 

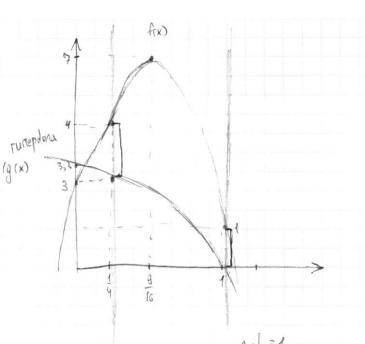
Оказалось, она касается гиперболы в  $x = \frac{3}{4}$ .

Ги пербола на  $x \in [\frac{1}{6}; 1]$  вы пукла ввер x, тогда если мы сместим какую-ли бо из точек, через коморые проходим прогиая в  $x = \frac{1}{4}$  или x = 1, то прашах начием нараской переселамь, отсюда единственний вариант x = -4; b = 5

10 x +  $|x|^2 - 10x | \log_3 4 \ge x^2 + 5 \log_3 (10x - x^2)$   $|x| = 10x - x^2$   $|x| = 10g_3 4 \ge 5 \log_3 a$   $|x| = 10g_3 4 \ge 5 \log_3 a$  $|x| = 10g_3 4 \ge 5 \log_3 a$ 

0.43:  $10x - x^2 > 0$   $x \in [0; 107]$ 




«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ШИФР

(заполняется секретарём)

## ПИСЬМЕННАЯ РАБОТА





$$f(\frac{1}{4}) = -2 + 9 - 3 = 4$$

$$f(\frac{1}{4}) = \frac{-12}{-4} = 3$$

$$h(x) = 0 \times + 6$$

0 3 11-36

b > 1/3

(1) (g)

$$\begin{cases} 3 \le h(\frac{1}{4}) \le 4 \\ 0 \le h(1) \le 1 \end{cases}$$
 (=>

$$\begin{cases} 3 \le \frac{a}{4} + b & ; \frac{a}{4} + b \le 1 \\ 0 \le a + b & a + b \le 1 \end{cases}$$

$$a + ab = 4$$
 $a + ab = 16$ 
 $a + a$ 

$$\begin{cases}
a + 4b \ge 12 & a \ge 12 - 4b & 0 \\
a + b \ge 0 & a \ge 16 - 4b & 0 \\
a + b \le 1 & a \le 1 - b & 0
\end{cases}$$



- 18



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ!»

ШИФР

(заполняется секретарём)

$$\frac{r}{R} = \frac{AD}{AE} ; AD \cdot DE = BD \cdot CD$$

$$\frac{r}{R} = \frac{AD}{AE} ; AD \cdot DE = BD \cdot CD$$

$$\frac{r}{R} = \frac{R}{R} =$$

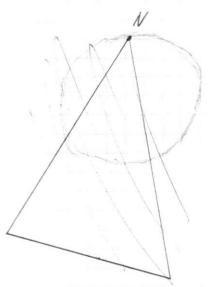
24. BIRRO

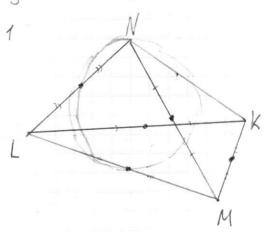
$$f(ab) = f(a) + f(b)$$

$$f(p) = \begin{bmatrix} p \\ 4 \end{bmatrix}, p - \pi poeroe$$

$$\begin{cases} 2 \le x, y \le 25 \\ f(\frac{x}{y}) \le 0 \end{cases}$$

$$f(\frac{x}{y}) \le 0$$


$$f\left(\frac{x}{y}\right) = f(x) + f\left(\frac{x}{y}\right)$$

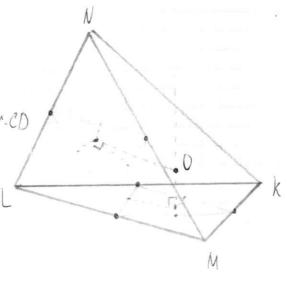

$$f(6) = f(2) + f(3) = 0$$

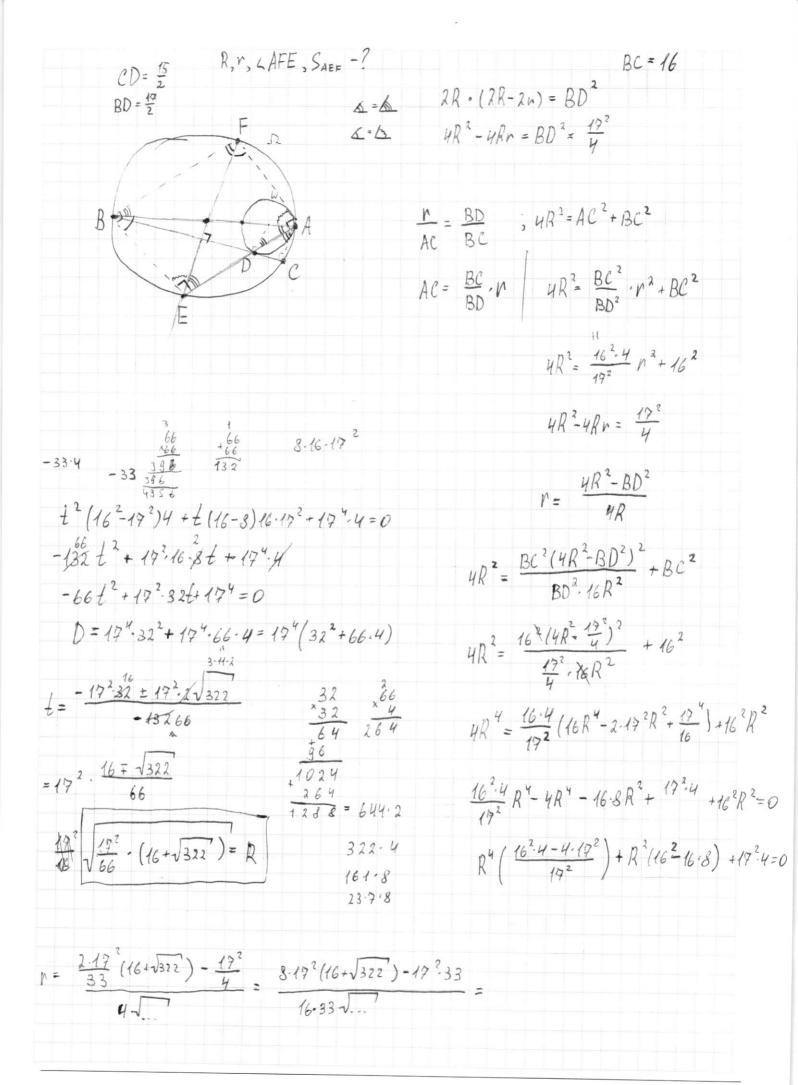
$$f(10) = f(2) + f(5) = 1$$

$$f(1)=0 KL=3 KM=1 F(1)=0 KM=1 KM=1 F(1)=0 KM=1 K$$

$$f(\frac{x}{y}) = f(x) - f(y)$$







$$\frac{2R}{2R-r} = \frac{BC}{BD}$$

$$N = 2R$$
.  $\frac{CD}{BC} = 2R \frac{\frac{15}{16}}{16} = \frac{15}{16}R$ 

$$2R \cdot \frac{1}{2}R = BD^2$$

$$R = 2 \cdot BD = 17$$
  $V = \frac{45 \cdot 17}{16}$ 







КОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР

(заполняется секретарём)

$$IMCOMEHHAN PADOTA$$

$$Ig = \frac{\sin h x}{\cos x} \qquad 2x + 2y = x \qquad Sin x = \sin 2x + \cos 2x + \sin 2y = -\frac{1}{48}$$

$$\cos x = \frac{1}{\sqrt{8}}; \quad \sin (x + 2y) + \sin 2x = \sin x \cdot \cos 2y + \cos 2x \cdot \sin 2y + \sin 2x$$

$$\cos x = \frac{1}{\sqrt{8}}; \quad \sin (x + 2y) + \sin 2x = \sin x \cdot \cos 2y + \cos 2x \cdot \sin 2y + \sin 2x$$

$$\cos x = \frac{1}{\sqrt{8}}; \quad \sin (x + 2y) + \sin 2x = \sin x \cdot \cos 2y + \cos 2x \cdot \sin 2y + \sin 2x$$

$$\cos x = \frac{1}{\sqrt{8}}; \quad \sin 2x \cdot \cos 2x \cdot \sin 2y + \cos 2x \cdot \sin 2x \cdot \cos 2x \cdot \sin 2y + \cos 2x \cdot \sin 2x \cdot \cos 2x \cdot \sin 2y + \cos 2x \cdot \sin 2x \cdot \cos 2x$$



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

| ШИФР                     |  |
|--------------------------|--|
| (заполняется секретарём) |  |

| черновик П чистовик               |                               |
|-----------------------------------|-------------------------------|
| (Поставьте галочку в нужном поле) | (Нумеровать только чистовики) |

|  |             |  |       |                      |  |   | _ |    |     |                | <u> </u> |    |    |             |                 |          |     |  |
|--|-------------|--|-------|----------------------|--|---|---|----|-----|----------------|----------|----|----|-------------|-----------------|----------|-----|--|
|  | чері (Поста |  | у в н | <b>ЧИ</b> (<br>ужном |  | ( |   | (] | Нум | C <sub>T</sub> | ра       | НИ | ща | а Л<br>10 ч | <u>о</u><br>ист | —<br>ОВИ | ки) |  |