МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОЛИМПИАДА "ФИЗТЕХ" ПО МАТЕМАТИКЕ

11 класс

ВАРИАНТ	3
---------	---

ШИФР

Заполняется ответственным секретарём

1. [3 балла] Углы α и β удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{8}{17}.$$

Найдите все возможные значения $\operatorname{tg} \alpha$, если известно, что он определён и что этих значений не меньше трёх.

2. [4 балла] Решите систему уравнений

$$\begin{cases} 3y - 2x = \sqrt{3xy - 2x - 3y + 2}, = \sqrt{(3y - 2)/x - 1} \\ 3x^2 + 3y^2 - 6x - 4y = 4. \end{cases}$$

$$3x(x-2) + y(3y-4) = 4$$

3. [5 баллов] Решите неравенство

$$3^{\log_4(x^2+6x)} + 6x \geqslant |x^2 + 6x|^{\log_4 5} - x^2.$$

- 4. [5 баллов] Окружности Ω и ω касаются в точке A внутренним образом. Отрезок AB диаметр большей окружности Ω , а хорда BC окружности Ω касается ω в точке D. Луч AD повторно пересекает Ω в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает Ω в точке F. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что $CD=\frac{5}{2},\ BD=\frac{13}{2}$.
- 5. [5 баллов] Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что $3 \leqslant x \leqslant 27$, $3 \leqslant y \leqslant 27$ и f(x/y) < 0.
- 6. [5 баллов] Найдите все пары чисел (a;b) такие, что неравенство

$$\frac{4x-3}{2x-2} \geqslant ax+b \geqslant 8x^2 - 34x + 30$$

выполнено для всех x на промежутке (1;3].

7. [6 баллов] Дана пирамида PQRS, вершина P которой лежит на одной сфере с серединами всех её рёбер, кроме ребра PQ. Известно, что QR=2, QS=1, $PS=\sqrt{2}$. Найдите длину ребра RS. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

MI	
1 cin (2x+2B)	
1 sin (2x+2B) = - 1/14	
7 5110 (2 6 1/12) - 1 51	
(sin (2x +4B) = sin2x = - 17	
20+2B=X	
(sin (2x+2/3) = - T/7	
(2 sin (2x+2B) cos 2B = -8	
) sim (2x+2/3) = - TIF	
$\left(-\frac{2}{\sqrt{17'}}\cos 2\beta = -\frac{8}{17}\right)$	
	, ,
$\cos 2\beta = \frac{4}{\sqrt{17}} = \sin 2\beta = 0$	7万
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1) $\int \sin 2\beta = \sqrt{\frac{1}{1+1}}$ $\int \omega s^2 \beta = \sqrt{1+1}$	
$\frac{1}{1}\cos 2B = \frac{4}{3}$	
(W) 2 V/7'	
Sina 2 cos 2/3 + 5in 2/3 cos 2 2 =	V17
4 1	
$\frac{\sin 2\alpha}{\sqrt{17}} + \frac{1}{\sqrt{17}}$ $\sin (2\alpha + 2\beta) = -\sin 2\beta$	
sin (2x+2p) = - sin23	
sin (2x+2/3) + sin2/3 =0	
	10.0
$2 \sin \left(\alpha + 2\beta \right) \cos \alpha = 0$, T.K.	tga-cyuzembyen, mo
sin (x+2B) =0	ws x +0
sina cos2/3 + sin2/3 cosa = 0	
sina way + sinapaan	

sinx cos2/3 + sin2/3 cosx = 0 1: cosx +0, 7.4. tgx. tga cos2p = - sinap $\int \sin 2\beta = -\frac{1}{\sqrt{17}}$ $\cos 2\beta = \frac{1}{\sqrt{17}}$ $\sin (2\alpha + 2\beta) = \sin 2\beta$ 2 sin & cos (2+2B) =0 L cos (2+2B)=0 I) sin x =0 (=> tg x=0 cos & cos 2 B - sin & sin 2 B = 0 $\cos 2\beta - tg\alpha \sin 2\beta = 0$ $tg\alpha = ctg 2\beta = 0$

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

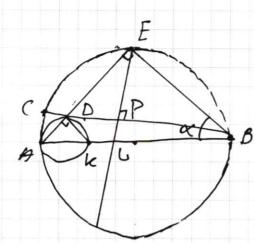
ШИФР

(заполняется секретарём)

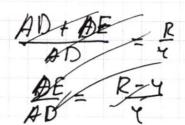
W2		x=1	
$\int 3y - 2x = \sqrt{3x}$	y-2x-3y+2	$ X=1 $ $ Y=\frac{2}{3} $ $ O=0 $	
$\frac{1}{3}x^2 + 3y^2 - 6$	c - 4y = 4	7 3 + 4 - 6 - 3 =	4
$3y - 2x = \sqrt{t}$	(3y-2) (x-1)	-3 - 4 = 4 -13 = 4 (1	1)
(34-2)-21	$(x-1) = \sqrt{(34)}$	-2)(4-1)	12 & hie worms
$(3y-2)-\sqrt{3}$	y-2) (x-1) -2	(x-1)=0	
1) 1×2/ 1 y > = 3			
$\frac{(34-2)}{x-1} - \sqrt{.}$	7	-2 =0	
$\sqrt{\frac{3y-27}{x-1}}=t$	726		
t 2- t-2=	0		
t = -1 t = (me yg yan)	$=2$ $\sqrt{3}y$	$-2 = 2\sqrt{x-1}$	
(12 99 9)	34.	-2 = 4x - 4	
	39	-4x=-2	
	3 4	$= 4x - 2$ $= 2)^{2} = 16(x-1)^{2}$	
	139-	(2) = 10 (7 11	

(4x-2) + 3x2 - 3 (4x-2) - 6x=4 $\frac{1}{3}(4x-2)(4x-2-4)$ - 16× =8 $3x^2 + 3y^2 + 6x - 4y = 4$ 3 (x-1) = + 3 y = - 4 y = 7 $3(x-1)^{2}+3(y^{2}-\frac{4}{3}y+\frac{4}{9})=7+\frac{4}{3}$ $3(x-1)^{2} + 3 \frac{(3y-2)^{2}}{3} = \frac{25}{3}$ $3(x-1)^{2} + \frac{16}{3}(x-1)^{2} = \frac{25}{3}$ $25(x-1)^2 = 25$ $(x-1)^2 = 1$ $x-1=\pm 1$ $\left(\frac{3y-2}{y-1}\right) + \sqrt{\frac{3y-2}{x-1}} - 2 = 0$ $\int_{X}^{X} = 2$ X = 0 (me yg yan) $\sqrt{\frac{3y-2}{x-1}} = 1 \sqrt{\frac{3y-2}{x-1}} = -2$ $\begin{cases} 2-3y = 1-x \\ 3(x-1)^2 + (x-1)^2 = \frac{25}{3} \end{cases}$ 14=2 10 (x-1)2 = 25 Ouben: (2,2) (1-15, 2-15) $\dot{x} - 1 = - \sqrt{\frac{5}{2}}$ $X = 1 \pm \sqrt{\frac{3}{2}}$ X= 1+ \(\frac{5}{2} \) (me ygym)

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»


П	IN	ФР	

(заполняется секретарём)


$$| \log_{4}(x^{2}+6x) + 6x > | x^{2}+6x|^{\log_{4} 5} - x^{2}$$

$$| \log_{4}(x^{2}+6x) = \frac{|M(x^{2}+6x)|^{\log_{4} 5}}{|M|^{4}} = \frac{|M|^{4}}{|M|^{4}} = \frac{|M|^{4}}{|M|^{4$$

 $egg(a) = \left(\frac{4}{5}\right)^{10949} - anaranzno f(a) - y dorbonen-s$ -> f(a)+g(a) - yborborem => egumurbemmoni pour neprecenciem 1 => unem pemerune eau Marogenice boine e upublicati 4/3], T. K. y Dorbain, mo $10949 \le 2$, T. K. npu 10949 = 2 nerecensiem 4 (a). 1094 9 = 2 0< a = 16 x 2 + 6x 20 × € (-6;0-) XE (-00; -6)V (0;+00) $\begin{cases} x^2 + 6x - 16 \le 0 \\ (x+3)(x-2) \le 0 \end{cases}$ x ∈ [-8;2) Graben: xe (-6;0) Ouben: XE[=8;6) V (0;2]

OAEBNOABK

ALLE AE?
$$\frac{4(R-4)}{R^2} = CD \cdot DB = \frac{65}{4}$$

$$A E^{2} = \frac{R^{2} 6Rzt}{1(R-t)} \cdot \frac{65}{4}$$

$$Sin^{2} = \frac{AE^{2}}{4R^{2}} = \frac{65}{16. \, t(R-t)} \quad cABE = \alpha = cAkD$$

$$LRDB = 90^{\circ}-2$$
 (menegy xopgoù u racameronai)
 $LDkL = 180^{\circ}-2$

(ourjouence maAB) => & BC · cos2x = 2R

$$g\left(1-2\sin^2\chi\right)=2R \qquad 1-2\sin^2\chi=\frac{2}{g}R$$

$$1-2\sin^2\alpha=\frac{2}{g}R$$

$$\frac{1}{R} - \frac{65}{84R(R-4)} = \frac{2}{9}$$

$$\frac{1}{R} - \frac{65}{8^{2}R(R-4)} = \frac{27}{9^{2}R}$$

$$\frac{1}{8^{2}R(R-4)} = \frac{27}{9^{2}R}$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + 65$$

$$\frac{1}{R} - \frac{65}{2^{2}R} = \frac{2}{9}BD^{2} = 2/R(R-4) = \frac{2}{9}R^{2}(R-4) + \frac{2}{9}R^{2}(R-4) + \frac{2}{9}R^{2}(R-4) = \frac{2}{9}R^{2}(R-4) + \frac{2$$

черновик

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ШИФР

(заполняется секретарём)

$$\begin{array}{lll}
\angle PRK &= & \angle k DB = & go \cdot \alpha \\
\angle DkL &= & 180 - \alpha
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 180 - \alpha
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 180 - \alpha
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 180 - \alpha
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 180 - \alpha
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 2 & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R
\end{array}$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

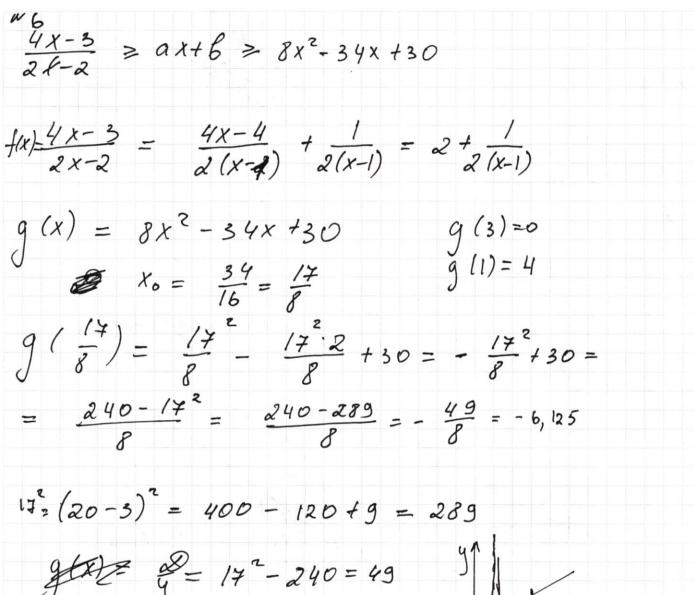
$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

$$\begin{array}{lll}
\angle PKL &= & 26 \cdot 4 \cdot R$$

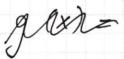
$$AKL &=$$

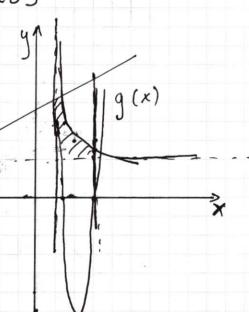
$$R - \frac{45 R}{26 (9-2R)} = 26.9 R - 72 R^2 - 45 R$$

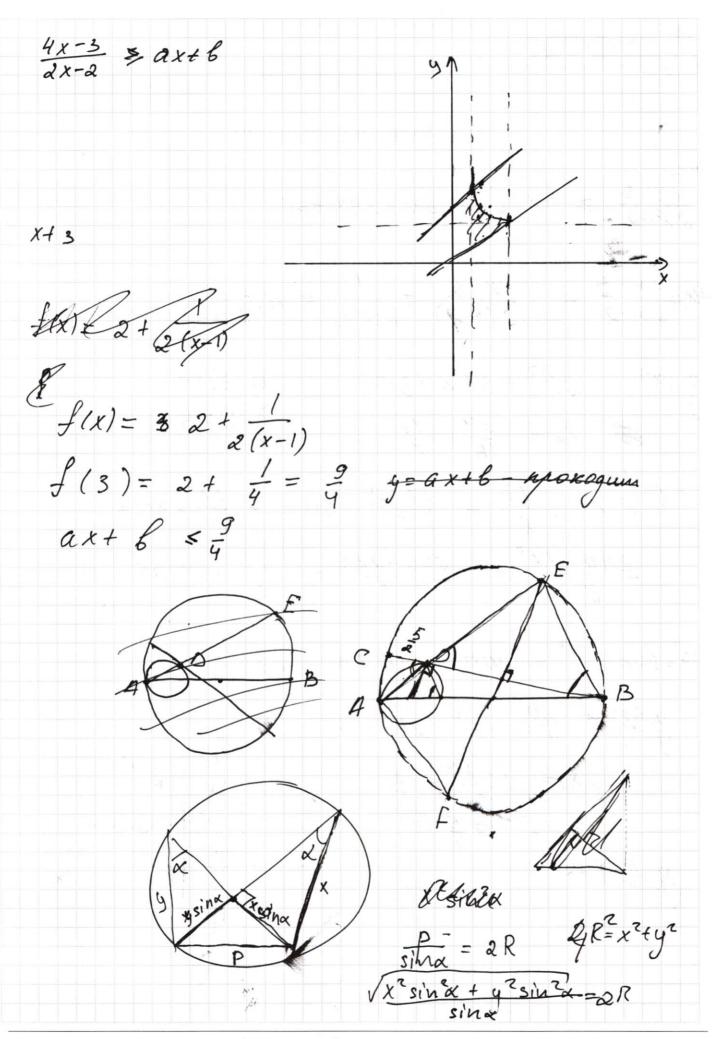

ФЕЛЕРАЛЬНОЕ ГОСУЛАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ШИФР


(заполняется секретарём)


ПИСЬМЕННАЯ РАБОТА



 $x_1 = \frac{1747}{9} = 3$

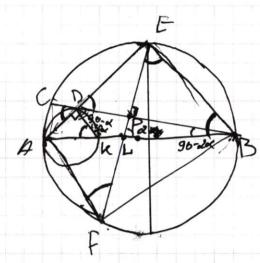
X2 = # 5

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

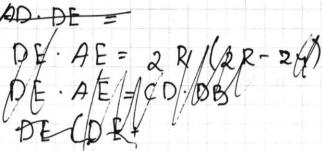
T	т	T	T	Ā	d	ħ	D

(заполняется секретарём)

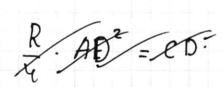
 $3(x-1)^{2} + \frac{(3y-2)^{2}}{3} = 4 + \frac{3}{4} = \frac{31}{4}$ $\sqrt{(3y-2)(x-1)^{2}} = (3y-2x)$ $|3y^{-2}| = a$ |x-1| = 6a-26=3y-2x a-26= Jab a- Vab -26=0 1: F6 $\frac{a}{b} - \sqrt{\frac{a}{b}} - 2 = 0$ $\int_{e}^{a'} = 2 \qquad \sqrt{a'} = 2\sqrt{b'}$ $36^{2} + \frac{16}{3}6^{2} = \frac{31}{4}$ f(g)=f(x)+f(g)= $\frac{25}{3}6^2 = \frac{31}{4}$ $6^2 = \frac{93}{100}$ = [4] + [44] $f\left(\frac{x}{9}\right) = f(x) + f\left(\frac{x}{9}\right)$



«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»


ШИФР

(заполняется секретарём)


ПИСЬМЕННАЯ РАБОТА

отнет пеореша онасошеньный и cenyagear

$$AB^{2} = eD^{2}$$

$$AE = \frac{R}{4} \cdot AD$$

$$R = eD \cdot DB$$

LAKD = LADC (you rungg xorgoù u nac) =>

=) & ADK ~ O DED => A LPBE= L PEB (T.H. LAEBSO) => CABE = CAKD = LPEB = ZAFE = LABE (ma ogny gyy) =>CAFE= CFEB

LAKD = x ; LDKB = 980-X c DPL = 90° - x (2 mengg xorgoni c DPL = 90° (no gar) 180- a + 90- a + 90° + 2 kbP= 360° LKLP=2X AB = BC = sin (90-2x) = BC. cos2x $Siu\alpha = \frac{AE}{AR} = \frac{AE}{2R} =$ AE= VE CD.DB $SiN^2 = \frac{RCD\cdot DB}{4R^2Y}$ AB = BC. (1- 13.5) = 9 (8R4 - 13.5)h 132 = 4R2 + 42R